Muutke küpsiste eelistusi

Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations 2010 ed. [Kõva köide]

Edited by , Edited by
  • Formaat: Hardback, 300 pages, kõrgus x laius: 235x165 mm, kaal: 608 g, 300 p., 1 Hardback
  • Sari: Operator Theory: Advances and Applications 205
  • Ilmumisaeg: 11-Dec-2009
  • Kirjastus: Birkhauser Verlag AG
  • ISBN-10: 3034601972
  • ISBN-13: 9783034601979
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 300 pages, kõrgus x laius: 235x165 mm, kaal: 608 g, 300 p., 1 Hardback
  • Sari: Operator Theory: Advances and Applications 205
  • Ilmumisaeg: 11-Dec-2009
  • Kirjastus: Birkhauser Verlag AG
  • ISBN-10: 3034601972
  • ISBN-13: 9783034601979
The International Workshop on Pseudo-Di erential Operators: Complex Analysis and Partial Di erential Equations was held at York University on August 4-8, 2008. The ?rst phase of the workshop on August 4-5 consisted of a mini-course on pseudo-di erential operators and boundary value problems given by Professor Bert-Wolfgang Schulze of Universita t Potsdam for graduate students and po- docs. This was followed on August 6-8 by a conference emphasizing boundary value problems;explicit formulas in complex analysis and partialdi erential eq- tions; pseudo-di erential operators and calculi; analysis on the Heisenberg group and sub-Riemannian geometry; and Fourier analysis with applications in ti- frequency analysis and imaging. The role of complex analysis in the development of pseudo-di erential op- ators can best be seen in the context of the well-known Cauchy kernel and the related Poisson kernel in, respectively, the Cauchy integral formula and the Po- son integral formula in the complex plane C. These formulas are instrumental in solving boundary value problems for the Cauchy-Riemann operator? and the Laplacian onspeci cdomainswith theunit disk andits biholomorphiccomp- ion, i. e. , the upper half-plane, as paradigm models. The corresponding problems in several complex variables can be formulated in the context of the unit disk n n in C , which may be the unit polydisk or the unit ball in C .
Preface vii
Boundary Value Problems with the Transmission Property
1(50)
B.-W. Schulze
Spectral Invariance of SG Pseudo-Differential Operators on Lp(Rn)
51(8)
A. Dasgupta
M.W. Wong
Edge-Degenerate Families of Pseudo-Differential Operators on an Infinite Cylinder
59(22)
J. Abed
B.-W. Schulze
Global Regularity and Stability in S-Spaces for Classes of Degenerate Shubin Operators
81(10)
T. Gramchev
S. Pilipovic
L. Rodino
Weyl's Lemma and Converse Mean Values for Dunkl Operators
91(10)
M. Maslouhi
R. Daher
Dirichlet Problems for Inhomogeneous Complex Mixed Partial Differential Equations of Higher Order in the Unit Disc: New View
101(28)
H. Begehr
Z. Du
N. Wang
Dirichlet Problems for Generalized n-Poisson Equations
129(14)
U. Aksoy
A.O. Celebi
Schwarz, Riemann, Riemann-Hilbert Problems and Their Connections in Polydomains
143(24)
A. Mohammed
Lp-Boundedness of Multilinear Pseudo-Differential Operators
167(14)
V. Catana
S. Molahajloo
M.W. Wong
A Trace Formula for Nuclear Operators on Lp
181(14)
J. Delgado
Products of Two-Wavelet Multipliers and Their Traces
195(18)
V. Catana
Pseudo-Differential Operators on Z
213(10)
S. Molahajloo
Pseudo-Differential Operators with Symbols in Modulation Spaces
223(12)
J. Toft
Phase-Space Differential Equations for Modes
235(16)
L. Cohen
Two-Window Spectrograms and Their Integrals
251(18)
P. Boggiatto
G. De Donno
A. Oliaro
Time-Time Distributions for Discrete Wavelet Transforms
269(8)
C.R. Pinnegar
H. Khosravani
P. Federico
The Stockwell Transform in Studying the Dynamics of Brain Functions
277
C. Liu
W. Gaetz
H. Zhu