Muutke küpsiste eelistusi

Pulse Code Modulation Systems Design [Kõva köide]

  • Formaat: Hardback, 329 pages, kõrgus: 230 mm, 200 illustrations and charts
  • Sari: Telecommunications S.
  • Ilmumisaeg: 01-Feb-1999
  • Kirjastus: Artech House Publishers
  • ISBN-10: 0890067767
  • ISBN-13: 9780890067765
  • Kõva köide
  • Hind: 79,76 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 329 pages, kõrgus: 230 mm, 200 illustrations and charts
  • Sari: Telecommunications S.
  • Ilmumisaeg: 01-Feb-1999
  • Kirjastus: Artech House Publishers
  • ISBN-10: 0890067767
  • ISBN-13: 9780890067765
Theoretically superior to older analog systems and ideally matched to semiconductor technology, pulse code modulation (PCM) is the dominant communications technology for many applications including telecommunications, telemetry, data recording, and data acquisition. Veteran professional engineer Waggener elaborates on the art and practice of PCM systems design to conceive of the big picture in designing the systems architecture to fulfill the required application specifications. From sending signals to receiving them, the text focuses on the PCM basics and processes implicated in applied engineering; sampling, quantization, and noise; wireless systems; cable systems; PCM encoding and modulation; demodulation and detection; and synchronization. Annotation c. by Book News, Inc., Portland, Or.
Preface xi(4)
Acknowledgments xv
1 Pulse Code Modulation Systems
1(18)
1.1 System Models
1(7)
1.1.1 Simple Transmission Model
5(2)
1.1.2 Transmission Model With a Transponder
7(1)
1.2 System Parameters
8(6)
1.2.1 Signal-to-Noise Ratio
9(2)
1.2.2 Bit Error Rate
11(1)
1.2.3 Root Mean Square (RMS) Error
12(1)
1.2.4 Timing and Synchronization
13(1)
1.3 System Design Worksheet
14(3)
Reference
17(2)
2 Sampling, Quantization and Noise
19(32)
2.1 Sampling
20(9)
2.1.1 Nyquist Sampling
20(2)
2.1.2 Aliasing
22(4)
2.1.3 Sample Rate Reduction
26(3)
2.2 Quantization and Analog-to-Digital Conversion
29(6)
2.3 Noise and Interference
35(14)
2.3.1 Noise
36(9)
2.3.2 Interference
45(4)
2.4 Design Charts
49(1)
References
50(1)
3 Wireless Systems
51(64)
3.1 Radio Systems
51(48)
3.1.1 Radio Frequency (RF) Propagation
53(34)
3.1.2 Antennas
87(9)
3.1.3 Background Noise and Interference
96(3)
3.2 Optical Systems
99(10)
3.2.1 Propagation
99(4)
3.2.2 Optical Components
103(4)
3.2.3 Noise
107(2)
3.3 Design Charts
109(4)
References
113(2)
4 Cable Systems
115(36)
4.1 Wireline Systems
118(13)
4.1.1 Propagation
118(7)
4.1.2 Cable Characteristics
125(6)
4.1.3 Cable Drivers and Receivers
131(1)
4.2 Fiber Optic Systems
131(15)
4.2.1 Propagation
133(5)
4.2.2 Couplers
138(1)
4.2.3 Transmitters
139(1)
4.2.4 Detectors
140(6)
4.3 Design Charts
146(3)
References
149(2)
5 PCM Encoding and Modulation
151(36)
5.1 PCM Baseband Codes
152(22)
5.1.1 Symbol Codes
153(11)
5.1.2 Channel Codes
164(10)
5.2 Modulation and Multiplexing
174(11)
5.2.1 Amplitude Modulation
176(4)
5.2.2 Frequency Modulation
180(2)
5.2.3 Phase Modulation
182(3)
References
185(2)
6 Demodulation and Detection
187(82)
6.1 Detection Basics
188(10)
6.1.1 Carrier Versus Baseband Signaling
194(4)
6.2 Baseband PCM Detection
198(12)
6.2.1 Rectangular Symbols
198(3)
6.2.2 Nyquist Symbols
201(4)
6.2.3 Partial Response Signals
205(5)
6.3 Coherent Demodulation
210(16)
6.3.1 Single Sideband Amplitude Modulation (SSB/AM)
211(1)
6.3.2 Quadrature Amplitude Modulation (QAM)
211(4)
6.3.3 PSK and M-ary PSK
215(1)
6.3.4 Frequency Shift Keying (FSK) and Continuous Phase Modulation (CPM)
216(5)
6.3.5 Spread Spectrum
221(1)
6.3.6 Coherent Demodulation of Optical Signals
221(5)
6.4 Incoherent Demodulation
226(8)
6.4.1 Amplitude Modulation
227(1)
6.4.2 Frequency Modulation
228(6)
6.5 Bit Error Performance With Intersymbol Interference and Fading
234(8)
6.5.1 Intersymbol Interference
235(5)
6.5.2 Fading
240(2)
6.6 Error Correction
242(17)
6.6.1 Block Codes
246(3)
6.6.2 Convolutional Codes
249(7)
6.6.3 Concatenated Codes
256(3)
6.6.4 Trellis Code Modulation (TCM)
259(1)
6.7 Equalization
259(6)
6.7.1 Filtering
260(1)
6.7.2 Transverse Digital Equalizers
261(2)
6.7.3 Maximum Likelihood Sequence Estimation (MLSE)
263(2)
References
265(4)
7 Synchronization
269(42)
7.1 Synchronization Basics
269(11)
7.2 Carrier Synchronization
280(16)
7.2.1 Carrier Synchronization for Suppressed Carrier Systems
282(5)
7.2.2 Performance of PSK Synchronizers
287(9)
7.3 Symbol Synchronization
296(6)
7.3.1 Symbol Synchronizer Performance
299(3)
7.4 Code Synchronization
302(3)
7.4.1 Block Codes
303(2)
7.4.2 Convolutional Codes
305(1)
7.5 Format Synchronization
305(2)
7.6 Equalizer Training
307(1)
References
308(3)
About the Author 311(2)
Index 313
A recognized expert in telemetry systems, William N. Waggener has more than 35 years of experience in communication, electro-optical, and recording technology. He is the president and founder of Chestnut Mountain Group, a research and development consulting organization in Sarasota, Florida. Mr. Waggener earned his B.S.E.E. from the Rose Hulman Institute of Technology and his M.E.E. from the University of Florida. He holds ten patents, is the author of Pulse Code Modulation Techniques (1995), has published nearly 40 technical papers, and is a life senior member of the IEEE.