Muutke küpsiste eelistusi

Pulse-Width Modulated DC-DC Power Converters 2nd edition [Kõva köide]

(Wright State University)
  • Formaat: Hardback, 960 pages, kõrgus x laius x paksus: 254x196x51 mm, kaal: 1728 g
  • Ilmumisaeg: 16-Oct-2015
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119009545
  • ISBN-13: 9781119009542
Teised raamatud teemal:
  • Formaat: Hardback, 960 pages, kõrgus x laius x paksus: 254x196x51 mm, kaal: 1728 g
  • Ilmumisaeg: 16-Oct-2015
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119009545
  • ISBN-13: 9781119009542
Teised raamatud teemal:

PWM DC-DC power converter technology underpins many energy conversion systems including renewable energy circuits, active power factor correctors, battery chargers, portable devices and LED drivers.

Following the success of Pulse-Width Modulated DC-DC Power Converters this second edition has been thoroughly revised and expanded to cover the latest challenges and advances in the field.

Key features of 2nd edition:

  • Four new chapters, detailing the latest advances in power conversion, focus on: small-signal model and dynamic characteristics of the buck converter in continuous conduction mode; voltage-mode control of buck converter; small-signal model and characteristics of the boost converter in the discontinuous conduction mode and electromagnetic compatibility EMC.
  • Provides readers with a solid understanding of the principles of operation, synthesis, analysis and design of PWM power converters and semiconductor power devices, including wide band-gap power devices (SiC and GaN).
  • Fully revised Solutions for all end-of-chapter problems available to instructors via the book companion website.
  • Step-by-step derivation of closed-form design equations with illustrations.
  • Fully revised figures based on real data.

With improved end-of-chapter summaries of key concepts, review questions, problems and answers, biographies and case studies, this is an essential textbook for graduate and senior undergraduate students in electrical engineering. Its superior readability and clarity of explanations also makes it a key reference for practicing engineers and research scientists.

About the Author xxi
Preface xxiii
Nomenclature xxv
1 Introduction 1(21)
1.1 Classification of Power Supplies
1(2)
1.2 Basic Functions of Voltage Regulators
3(1)
1.3 Power Relationships in DC-DC Converters
4(1)
1.4 DC Transfer Functions of DC-DC Converters
5(1)
1.5 Static Characteristics of DC Voltage Regulators
6(3)
1.6 Dynamic Characteristics of DC Voltage Regulators
9(3)
1.7 Linear Voltage Regulators
12(4)
1.7.1 Series Voltage Regulator
13(1)
1.7.2 Shunt Voltage Regulator
14(2)
1.8 Topologies of PWM DC-DC Converters
16(2)
1.9 Relationships Among Current, Voltage, Energy, and Power
18(1)
1.10 Summary
19(1)
References
19(1)
Review Questions
20(1)
Problems
21(1)
2 Buck PWM DC-DC Converter 22(68)
2.1 Introduction
22(1)
2.2 DC Analysis of PWM Buck Converter for CCM
22(30)
2.2.1 Circuit Description
22(3)
2.2.2 Assumptions
25(1)
2.2.3 Time Interval: 0 < t < or = to DT
25(1)
2.2.4 Time Interval: DT < t < or = to T
26(1)
2.2.5 Device Stresses for CCM
27(1)
2.2.6 DC Voltage Transfer Function for CCM
27(2)
2.2.7 Boundary Between CCM and DCM
29(2)
2.2.8 Capacitors
31(2)
2.2.9 Ripple Voltage in Buck Converter for CCM
33(6)
2.2.10 Switching Losses with Linear MOSFET Output Capacitance
39(1)
2.2.11 Switching Losses with Nonlinear MOSFET Output Capacitance
40(3)
2.2.12 Power Losses and Efficiency of Buck Converter for CCM
43(5)
2.2.13 DC Voltage Transfer Function of Lossy Converter for CCM
48(1)
2.2.14 MOSFET Gate-Drive Power
48(1)
2.2.15 Gate Driver
49(1)
2.2.16 Design of Buck Converter for CCM
50(2)
2.3 DC Analysis of PWM Buck Converter for DCM
52(16)
2.3.1 Time Interval: 0 < t < or = to DT
56(2)
2.3.2 Time Interval: DT < t < or = to (D + D1)T
58(1)
2.3.3 Time Interval: (D + D1)T < t < or = to T
58(1)
2.3.4 Device Stresses for DCM
59(1)
2.3.5 DC Voltage Transfer Function for DCM
59(3)
2.3.6 Maximum Inductance for DCM
62(1)
2.3.7 Power Losses and Efficiency of Buck Converter for DCM
63(2)
2.3.8 Design of Buck Converter for DCM
65(3)
2.4 Buck Converter with Input Filter
68(1)
2.5 Buck Converter with Synchronous Rectifier
68(8)
2.6 Buck Converter with Positive Common Rail
76(1)
2.7 Quadratic Buck Converter
76(3)
2.8 Tapped-Inductor Buck Converters
79(4)
2.8.1 Tapped-Inductor Common-Diode Buck Converter
79(2)
2.8.2 Tapped-Inductor Common-Transistor Buck Converter
81(1)
2.8.3 Watkins-Johnson Converter
82(1)
2.9 Multiphase Buck Converter
83(2)
2.10 Switched-Inductor Buck Converter
85(1)
2.11 Layout
85(1)
2.12 Summary
85(2)
References
87(1)
Review Questions
88(1)
Problems
88(2)
3 Boost PWM DC-DC Converter 90(55)
3.1 Introduction
90(1)
3.2 DC Analysis of PWM Boost Converter for CCM
90(17)
3.2.1 Circuit Description
90(1)
3.2.2 Assumptions
91(2)
3.2.3 Time Interval: 0 < t < or = to DT
93(1)
3.2.4 Time Interval: DT < t < or = to T
94(1)
3.2.5 DC Voltage Transfer Function for CCM
94(1)
3.2.6 Boundary Between CCM and DCM
95(3)
3.2.7 Ripple Voltage in Boost Converter for CCM
98(2)
3.2.8 Power Losses and Efficiency of Boost Converter for CCM
100(2)
3.2.9 DC Voltage Transfer Function of Lossy Boost Converter for CCM
102(1)
3.2.10 Design of Boost Converter for CCM
103(4)
3.3 DC Analysis of PWM Boost Converter for DCM
107(20)
3.3.1 Time Interval: 0 < t < or = to DT
110(1)
3.3.2 Time Interval: DT < t < or = to (D + D1)T
111(1)
3.3.3 Time Interval: (D + D1)T < t < or = to T
112(1)
3.3.4 Device Stresses for DCM
112(1)
3.3.5 DC Voltage Transfer Function for DCM
112(5)
3.3.6 Maximum Inductance for DCM
117(1)
3.3.7 Power Losses and Efficiency of Boost Converter for DCM
117(3)
3.3.8 Design of Boost Converter for DCM
120(7)
3.4 Bidirectional Buck and Boost Converters
127(2)
3.5 Synchronous Boost Converter
129(1)
3.6 Tapped-Inductor Boost Converters
129(4)
3.6.1 Tapped-Inductor Common-Diode Boost Converter
131(1)
3.6.2 Tapped-Inductor Common-Load Boost Converter
132(1)
3.7 Duality
133(1)
3.8 Power Factor Correction
134(7)
3.8.1 Power Factor
134(4)
3.8.2 Boost Power Factor Corrector
138(3)
3.8.3 Electronic Ballasts for Fluorescent Lamps
141(1)
3.9 Summary
141(1)
References
142(1)
Review Questions
143(1)
Problems
143(2)
4 Buck-Boost PWM DC-DC Converter 145(50)
4.1 Introduction
145(1)
4.2 DC Analysis of PWM Buck-Boost Converter for CCM
145(17)
4.2.1 Circuit Description
145(1)
4.2.2 Assumptions
146(1)
4.2.3 Time Interval: 0 < t < or = to DT
146(2)
4.2.4 Time Interval: DT < t < or = to T
148(1)
4.2.5 DC Voltage Transfer Function for CCM
149(1)
4.2.6 Device Stresses for CCM
150(1)
4.2.7 Boundary Between CCM and DCM
151(1)
4.2.8 Ripple Voltage in Buck-Boost Converter for CCM
152(3)
4.2.9 Power Losses and Efficiency of the Buck-Boost Converter for CCM
155(3)
4.2.10 DC Voltage Transfer Function of Lossy Buck-Boost Converter for CCM
158(1)
4.2.11 Design of Buck-Boost Converter for CCM
159(3)
4.3 DC Analysis of PWM Buck-Boost Converter for DCM
162(18)
4.3.1 Time Interval: 0 < t < or = to DT
165(1)
4.3.2 Time Interval: DT < t < or = to (D + D1)T
166(1)
4.3.3 Time Interval: (D + D1)T < t < or = to T
167(1)
4.3.4 Device Stresses of the Buck-Boost Converter in DCM
167(1)
4.3.5 DC Voltage Transfer Function of the Buck-Boost Converter for DCM
167(3)
4.3.6 Maximum Inductance for DCM
170(2)
4.3.7 Power Losses and Efficiency of the Buck-Boost Converter in DCM
172(2)
4.3.8 Design of Buck-Boost Converter for DCM
174(6)
4.4 Bidirectional Buck-Boost Converter
180(1)
4.5 Synthesis of Buck-Boost Converter
181(2)
4.6 Synthesis of Boost-Buck (Cuk) Converter
183(1)
4.7 Noninverting Buck-Boost Converters
184(2)
4.7.1 Cascaded Noninverting Buck-Boost Converters
184(1)
4.7.2 Four-Transistor Noninverting Buck-Boost Converters
184(2)
4.8 Tapped-Inductor Buck-Boost Converters
186(6)
4.8.1 Tapped-Inductor Common-Diode Buck-Boost Converter
186(1)
4.8.2 Tapped-Inductor Common-Transistor Buck-Boost Converter
187(1)
4.8.3 Tapped-Inductor Common-Load Buck-Boost Converter
188(3)
4.8.4 Tapped-Inductor Common-Source Buck-Boost Converter
191(1)
4.9 Summary
192(1)
References
192(1)
Review Questions
193(1)
Problems
193(2)
5 Flyback PWM DC-DC Converter 195(51)
5.1 Introduction
195(1)
5.2 Transformers
196(1)
5.3 DC Analysis of PWM Flyback Converter for CCM
197(17)
5.3.1 Derivation of PWM Flyback Converter
197(1)
5.3.2 Circuit Description
197(2)
5.3.3 Assumptions
199(1)
5.3.4 Time Interval: 0 < t < or = to DT
200(1)
5.3.5 Time Interval: DT < t < or = to T
201(2)
5.3.6 DC Voltage Transfer Function for CCM
203(1)
5.3.7 Boundary Between CCM and DCM
204(1)
5.3.8 Ripple Voltage in Flyback Converter for CCM
205(2)
5.3.9 Power Losses and Efficiency of Flyback Converter for CCM
207(3)
5.3.10 DC Voltage Transfer Function of Lossy Converter for CCM
210(1)
5.3.11 Design of Flyback Converter for CCM
211(3)
5.4 DC Analysis of PWM Flyback Converter for DCM
214(18)
5.4.1 Time Interval: 0 < t < or = to DT
217(2)
5.4.2 Time Interval: DT < t < or = to (D + D1)T
219(1)
5.4.3 Time Interval: (D + D1)T < t < or = to T
220(1)
5.4.4 DC Voltage Transfer Function for DCM
221(1)
5.4.5 Maximum Magnetizing Inductance for DCM
222(3)
5.4.6 Ripple Voltage in Flyback Converter for DCM
225(1)
5.4.7 Power Losses and Efficiency of Flyback Converter for DCM
226(2)
5.4.8 Design of Flyback Converter for DCM
228(4)
5.5 Multiple-Output Flyback Converter
232(5)
5.6 Bidirectional Flyback Converter
237(1)
5.7 Ringing in Flyback Converter
237(3)
5.8 Flyback Converter with Passive Dissipative Snubber
240(1)
5.9 Flyback Converter with Zener Diode Voltage Clamp
240(1)
5.10 Flyback Converter with Active Clamping
241(1)
5.11 Two-Transistor Flyback Converter
241(2)
5.12 Summary
243(1)
References
244(1)
Review Questions
244(1)
Problems
245(1)
6 Forward PWM DC-DC Converter 246(50)
6.1 Introduction
246(1)
6.2 DC Analysis of PWM Forward Converter for CCM
246(23)
6.2.1 Derivation of Forward PWM Converter
246(2)
6.2.2 Time Interval: 0 < t < or = to DT
248(3)
6.2.3 Time Interval: DT < t < or = to DT + tm
251(2)
6.2.4 Time Interval: DT + tm < t < or = to T
253(1)
6.2.5 Maximum Duty Cycle
253(1)
6.2.6 Device Stresses
254(1)
6.2.7 DC Voltage Transfer Function for CCM
255(1)
6.2.8 Boundary Between CCM and DCM
255(1)
6.2.9 Ripple Voltage in Forward Converter for CCM
256(2)
6.2.10 Power Losses and Efficiency of Forward Converter for CCM
258(3)
6.2.11 DC Voltage Transfer Function of Lossy Converter for CCM
261(1)
6.2.12 Design of Forward Converter for CCM
262(7)
6.3 DC Analysis of PWM Forward Converter for DCM
269(19)
6.3.1 Time Interval: 0 < t < or = to DT
269(3)
6.3.2 Time Interval: DT < t < or = to DT + tm
272(1)
6.3.3 Time Interval: DT + tm < t < or = to (D + D1)T
273(1)
6.3.4 Time Interval: (D + D1)T < t < or = to T
273(1)
6.3.5 DC Voltage Transfer Function for DCM
274(3)
6.3.6 Maximum Inductance for DCM
277(1)
6.3.7 Power Losses and Efficiency of Forward Converter for DCM
278(2)
6.3.8 Design of Forward Converter for DCM
280(8)
6.4 Multiple-Output Forward Converter
288(1)
6.5 Forward Converter with Synchronous Rectifier
288(1)
6.6 Forward Converters with Active Clamping
288(2)
6.7 Two-Switch Forward Converter
290(1)
6.8 Forward-Flyback Converter
291(1)
6.9 Summary
292(1)
References
293(1)
Review Questions
293(1)
Problems
294(2)
7 Half-Bridge PWM DC-DC Converter 296(34)
7.1 Introduction
296(1)
7.2 DC Analysis of PWM Half-Bridge Converter for CCM
296(19)
7.2.1 Circuit Description
296(3)
7.2.2 Assumptions
299(1)
7.2.3 Time Interval: 0 < t < or = to DT
299(2)
7.2.4 Time Interval: DT < t < or = to T/2
301(2)
7.2.5 Time Interval: T/2 < t < or = to T/2 + DT
303(1)
7.2.6 Time Interval: T/2 + DT < t < or = to T
304(1)
7.2.7 Device Stresses
304(1)
7.2.8 DC Voltage Transfer Function of Lossless Half-Bridge Converter for CCM
304(1)
7.2.9 Boundary Between CCM and DCM
305(1)
7.2.10 Ripple Voltage in Half-Bridge Converter for CCM
306(2)
7.2.11 Power Losses and Efficiency of Half-Bridge Converter for CCM
308(3)
7.2.12 DC Voltage Transfer Function of Lossy Converter for CCM
311(1)
7.2.13 Design of Half-Bridge Converter for CCM
312(3)
7.3 DC Analysis of PWM Half-Bridge Converter for DCM
315(11)
7.3.1 Time Interval: 0 < t < or = to DT
315(5)
7.3.2 Time Interval: DT < t < or = to (D + D1)T
320(2)
7.3.3 Time Interval: (D + D1)T < t <or = to T/2
322(1)
7.3.4 DC Voltage Transfer Function for DCM
322(4)
7.3.5 Maximum Inductance for DCM
326(1)
7.4 Summary
326(1)
References
327(1)
Review Questions
327(1)
Problems
328(2)
8 Full-Bridge PWM DC-DC Converter 330(35)
8.1 Introduction
330(1)
8.2 DC Analysis of PWM Full-Bridge Converter for CCM
330(21)
8.2.1 Circuit Description
330(2)
8.2.2 Assumptions
332(1)
8.2.3 Time Interval: 0 < t < or = to DT
332(2)
8.2.4 Time Interval: DT < t < or = to T/2
334(2)
8.2.5 Time Interval: T/2 < t < or = to T/2 + DT
336(1)
8.2.6 Time Interval: T/2 + DT < t < or = to T
336(1)
8.2.7 Device Stresses
337(1)
8.2.8 DC Voltage Transfer Function of Lossless Full-Wave Converter for CCM
337(1)
8.2.9 Boundary Between CCM and DCM
338(1)
8.2.10 Ripple Voltage in Full-Bridge Converter for CCM
339(1)
8.2.11 Power Losses and Efficiency of Full-Bridge Converter for CCM
340(4)
8.2.12 DC Voltage Transfer Function of Lossy Converter for CCM
344(1)
8.2.13 Design of Full-Bridge Converter for CCM
345(6)
8.3 DC Analysis of PWM Full-Bridge Converter for DCM
351(10)
8.3.1 Time Interval: 0 < t < or = to DT
351(2)
8.3.2 Time Interval: DT < t < or = to (D + D1)T
353(2)
8.3.3 Time Interval: (D + D1)T < t < or = to or = to T/2
355(1)
8.3.4 DC Voltage Transfer Function for DCM
356(3)
8.3.5 Maximum Inductance for DCM
359(2)
8.4 Phase-Controlled Full-Bridge Converter
361(1)
8.5 Summary
362(1)
References
362(1)
Review Questions
362(1)
Problems
363(2)
9 Small-Signal Models of PWM Converters for CCM and DCM 365(42)
9.1 Introduction
365(1)
9.2 Assumptions
366(1)
9.3 Averaged Model of Ideal Switching Network for CCM
366(3)
9.4 Averaged Values of Switched Resistances
369(6)
9.5 Model Reduction
375(2)
9.6 Large-Signal Averaged Model for CCM
377(4)
9.7 DC and Small-Signal Circuit Linear Models of Switching Network for CCM
381(4)
9.7.1 Large-Signal Circuit Model of Switching Network for CCM
381(3)
9.7.2 Linearization of Switching Network Model for CCM
384(1)
9.8 Block Diagram of Small-signal Model of PWM DC-DC Converters
385(1)
9.9 Family of PWM Converter Models for CCM
386(3)
9.10 PWM Small-Signal Switch Model for CCM
389(2)
9.11 Modeling of Ideal Switching Network for DCM
391(7)
9.11.1 Relationships Among DC Components for DCM
391(4)
9.11.2 Small-Signal Model of Ideal Switching Network for DCM
395(3)
9.12 Averaged Parasitic Resistances for DCM
398(2)
9.13 Summary
400(2)
References
402(3)
Review Questions
405(1)
Problems
405(2)
10 Small-Signal Characteristics of Buck Converter for CCM 407(32)
10.1 Introduction
407(1)
10.2 Small-Signal Model of the PWM Buck Converter
407(1)
10.3 Open-Loop Transfer Functions
408(18)
10.3.1 Open-Loop Control-to-Output Transfer Function
409(7)
10.3.2 Delay in Control-to-Output Transfer Function
416(2)
10.3.3 Open-Loop Input-to-Output Transfer Function
418(2)
10.3.4 Open-Loop Input Impedance
420(3)
10.3.5 Open-Loop Output Impedance
423(3)
10.4 Open-Loop Step Responses
426(8)
10.4.1 Open-Loop Response of Output Voltage to Step Change in Input Voltage
426(5)
10.4.2 Open-Loop Response of Output Voltage to Step Change in Duty Cycle
431(2)
10.4.3 Open-Loop Response of Output Voltage to Step Change in Load Current
433(1)
10.5 Open-Loop DC Transfer Functions
434(2)
10.6 Summary
436(1)
References
436(1)
Review Questions
437(1)
Problems
438(1)
11 Small-Signal Characteristics of Boost Converter for CCM 439(31)
11.1 Introduction
439(1)
11.2 DC Characteristics
439(1)
11.3 Open-Loop Control-to-Output Transfer Function
440(9)
11.4 Delay in Open-Loop Control-to-Output Transfer Function
449(2)
11.5 Open-Loop Audio Susceptibility
451(4)
11.6 Open-Loop Input Impedance
455(2)
11.7 Open-Loop Output Impedance
457(4)
11.8 Open-Loop Step Responses
461(6)
11.8.1 Open-Loop Response of Output Voltage to Step Change in Input Voltage
461(3)
11.8.2 Open-Loop Response of Output Voltage to Step Change in Duty Cycle
464(1)
11.8.3 Open-Loop Response of Output Voltage to Step Change in Load Current
465(2)
11.9 Summary
467(1)
References
467(1)
Review Questions
468(1)
Problems
468(2)
12 Voltage-Mode Control of PWM Buck Converter 470(51)
12.1 Introduction
470(1)
12.2 Properties of Negative Feedback
471(3)
12.3 Stability
474(1)
12.4 Single-Loop Control of PWM Buck Converter
475(3)
12.5 Closed-Loop Small-Signal Model of Buck Converter
478(1)
12.6 Pulse-Width Modulator
478(5)
12.7 Feedback Network
483(3)
12.8 Transfer Function of Buck Converter with Modulator and Feedback Network
486(3)
12.9 Control Circuits
489(22)
12.9.1 Error Amplifier
489(1)
12.9.2 Proportional Controller
490(2)
12.9.3 Integral Controller
492(1)
12.9.4 Proportional-Integral Controller
493(4)
12.9.5 Integral-Single-Lead Controller
497(7)
12.9.6 Loop Gain
504(1)
12.9.7 Closed-Loop Control-to-Output Voltage Transfer Function
504(2)
12.9.8 Closed-Loop Input-to-Output Transfer Function
506(2)
12.9.9 Closed-Loop Input Impedance
508(1)
12.9.10 Closed-Loop Output Impedance
509(2)
12.10 Closed-Loop Step Responses
511(7)
12.10.1 Response to Step Change in Input Voltage
511(2)
12.10.2 Response to Step Change in Reference Voltage
513(2)
12.10.3 Closed-Loop Response to Step Change in Load Current
515(1)
12.10.4 Closed-Loop DC Transfer Functions
515(3)
12.11 Summary
518(1)
References
519(1)
Review Questions
519(1)
Problems
520(1)
13 Voltage-Mode Control of Boost Converter 521(33)
13.1 Introduction
521(1)
13.2 Circuit of Boost Converter with Voltage-Mode Control
521(2)
13.3 Transfer Function of Modulator, Boost Converter Power Stage, and Feedback Network
523(4)
13.4 Integral-Double-Lead Controller
527(5)
13.5 Design of Integral-Double-Lead Controller
532(4)
13.6 Loop Gain
536(1)
13.7 Closed-Loop Control-to-Output Voltage Transfer Function
537(2)
13.8 Closed-Loop Audio Susceptibility
539(1)
13.9 Closed-Loop Input Impedance
539(3)
13.10 Closed-Loop Output Impedance
542(2)
13.11 Closed-Loop Step Responses
544(5)
13.11.1 Closed-Loop Response to Step Change in Input Voltage
544(3)
13.11.2 Closed-Loop Response to Step Change in Reference Voltage
547(1)
13.11.3 Closed-Loop Response to Step Change in Load Current
548(1)
13.12 Closed-Loop DC Transfer Functions
549(3)
13.13 Summary
552(1)
References
552(1)
Review Questions
552(1)
Problems
553(1)
14 Current-Mode Control 554(91)
14.1 Introduction
554(1)
14.2 Principle of Operation of PWM Converters with Peak CMC
555(4)
14.3 Relationship Between Duty Cycle and Inductor-Current Slopes
559(1)
14.4 Instability of Closed-Current Loop
560(4)
14.5 Slope Compensation
564(6)
14.5.1 Analysis of Slope Compensation in Time Domain
564(5)
14.5.2 Boundary of Slope Compensation for Buck and Buck-Boost Converters
569(1)
14.5.3 Boundary Slope Compensation for Boost Converter
570(1)
14.6 Sample-and-Hold Effect on Current Loop
570(10)
14.6.1 Natural Response of Inductor Current to Small Perturbation in Closed-Current Loop
572(3)
14.6.2 Forced Response of Inductor Current to Step Change in Control Voltage in Closed-Current Loop
575(2)
14.6.3 Relationship Between s-Domain and z-Domain
577(1)
14.6.4 Transfer Function of Closed-Current Loop in z-Domain
578(2)
14.7 Closed-Loop Control Voltage-to-Inductor Current Transfer Function in s-Domain
580(8)
14.7.1 Approximation of Hid by Rational Transfer Function
582(6)
14.7.2 Step Responses of Closed-Inner Loop
588(1)
14.8 Loop Gain of Current Loop
588(7)
14.8.1 Loop Gain of Inner Loop in z-Domain
588(2)
14.8.2 Loop Gain of Inner Loop in s-Domain
590(5)
14.9 Gain-Crossover Frequency of Inner Loop
595(1)
14.10 Phase Margin of Inner Loop
596(2)
14.11 Maximum Duty Cycle for Converters Without Slope Compensation
598(2)
14.12 Maximum Duty Cycle for Converters with Slope Compensation
600(5)
14.13 Minimum Slope Compensation for Buck and Buck-Boost Converter
605(2)
14.14 Minimum Slope Compensation for Boost Converter
607(3)
14.15 Error Voltage-to-Duty Cycle Transfer Function
610(4)
14.16 Closed-Loop Control Voltage-to-Duty Cycle Transfer Function of Current Loop
614(4)
14.17 Alternative Representation of Current Loop
618(1)
14.18 Current Loop with Disturbances
618(6)
14.18.1 Modified Approximation of Current Loop
619(5)
14.19 Voltage Loop of PWM Converters with Current-Mode Control
624(7)
14.19.1 Control-to-Output Transfer Function for Buck Converter
624(3)
14.19.2 Block Diagram of Power Stages of PWM Converters
627(1)
14.19.3 Closed-Voltage Loop Transfer Function of PWM Converters with Current-Mode Control
628(1)
14.19.4 Closed-Loop Audio Susceptibility of PWM Converters with Current-Mode Control
628(2)
14.19.5 Closed-Loop Output Impedance of PWM Converters with Current-Mode Control
630(1)
14.20 Feedforward Gains in PWM Converters with Current-Mode Control without Slope Compensation
631(3)
14.21 Feedforward Gains in PWM Converters with Current-Mode Control and Slope Compensation
634(2)
14.22 Control-to-Output Voltage Transfer Function of Inner Loop with Feedforward Gains
636(1)
14.23 Audio-Susceptibility of Inner Loop with Feedforward Gains
637(1)
14.24 Closed-Loop Transfer Functions with Feedforward Gains
638(1)
14.25 Slope Compensation by Adding a Ramp to Inductor Current Waveform
638(1)
14.26 Relationships for Constant-Frequency Current-Mode On-Time Control
639(1)
14.27 Summary
639(1)
References
640(4)
Review Questions
644(1)
Problems
644(1)
14.28 Appendix: Sample-and-Hold Modeling 645(8)
14.28.1 Sampler of the Control Voltage
645(3)
14.28.2 Zero-Order Hold of Inductor Current
648(2)
14.28.3 Approximations of e
650(3)
15 Current-Mode Control of Boost Converter 653(60)
15.1 Introduction
653(1)
15.2 Open-Loop Small-Signal Transfer Functions
653(14)
15.2.1 Open-Loop Duty Cycle-to-Inductor Current Transfer Function
653(6)
15.2.2 High-Frequency Open-Loop Duty Cycle-to-Inductor Current Transfer Function
659(1)
15.2.3 Open-Loop Input Voltage-to-Inductor Current Transfer Function
660(5)
15.2.4 Open-Loop Inductor-to-Output Current Transfer Function
665(2)
15.3 Open-Loop Step Responses of Inductor Current
667(8)
15.3.1 Open-Loop Response of Inductor Current to Step Change in Input Voltage
667(3)
15.3.2 Open-Loop Response of the Inductor Current to Step Change in the Duty Cycle
670(2)
15.3.3 Open-Loop Response of Inductor Current to Step Change in Load Current
672(3)
15.4 Closed-Current-Loop Transfer Functions
675(20)
15.4.1 Forward Gain
675(1)
15.4.2 Loop Gain of Current Loop
675(1)
15.4.3 Closed-Loop Gain of Current Loop
675(2)
15.4.4 Control-to-Output Transfer Function
677(7)
15.4.5 Input Voltage-to-Duty Cycle Transfer Function
684(4)
15.4.6 Load Current-to-Duty Cycle Transfer Function
688(2)
15.4.7 Output Impedance of Closed-Current Loop
690(5)
15.5 Closed-Voltage-Loop Transfer Functions
695(11)
15.5.1 Control-to-Output Transfer Function
695(1)
15.5.2 Control Voltage-to-Feedback Voltage Transfer Function
695(2)
15.5.3 Loop Gain of Voltage Loop
697(4)
15.5.4 Closed-Loop Gain of Voltage Loop
701(2)
15.5.5 Closed-Loop Audio Susceptibility with Integral Controller
703(1)
15.5.6 Closed-Loop Output Impedance with Integral Controller
704(2)
15.6 Closed-Loop Step Responses
706(4)
15.6.1 Closed-Loop Response of Output Voltage to Step Change in Input Voltage
706(2)
15.6.2 Closed-Loop Response of Output Voltage to Step Change in Load Current
708(1)
15.6.3 Closed-Loop Response of Output Voltage to Step Change in Reference Voltage
708(2)
15.7 Closed-Loop DC Transfer Functions
710(1)
15.8 Summary
711(1)
References
711(1)
Review Questions
712(1)
Problems
712(1)
16 Open-Loop Small-Signal Characteristics of PWM Boost Converter for DCM 713(34)
16.1 Introduction
713(1)
16.2 Small-Signal Model of Boost Converter for DCM
713
16.3 Open-Loop Control-to-Output Transfer Function 71f
16.4 Open-Loop Input-to-Output Voltage Transfer Function 71C
16.5 Open-Loop Input Impedance 72i
16.6 Open-Loop Output Impedance
72(656)
16.7 Step Responses of Output Voltage of Boost Converter for DCM
728(3)
16.7.1 Response of Output Voltage to Step Change in Input Voltage
728(2)
16.7.2 Response of Output Voltage to Step Change in Duty Cycle
730(1)
16.7.3 Response of Output Voltage to Step Change in Load Current
730(1)
16.8 Open-Loop Duty Cycle-to-Inductor Current Transfer Function
731(4)
16.9 Open-Loop Input Voltage-to-Inductor Current Transfer Function
735(1)
16.10 Open-Loop Output Current-to-Inductor Current Transfer Function
735(3)
16.11 Step Responses of Inductor Current of Boost Converter for DCM
738(4)
16.11.1 Step Response of Inductor Current to Step Change in Input Voltage
738(2)
16.11.2 Step Response of Inductor Current to Step Change in Duty Cycle
740(1)
16.11.3 Step Response of Inductor Current to Step Change in Load Current
741(1)
16.12 DC Characteristics of Boost Converter for DCM
742(3)
16.12.1 DC-to-DC Voltage Transfer Function of Lossless Boost Converter for DCM
742(1)
16.12.2 DC-to-DC Voltage Transfer Function of Lossy Boost Converter for DCM
743(2)
16.12.3 Efficiency of Boost Converter for DCM
745(1)
16.13 Summary
745(1)
References
745(1)
Review Questions
746(1)
Problems
746(1)
17 Silicon and Silicon-Carbide Power Diodes 747(72)
17.1 Introduction
747(1)
17.2 Electronic Power Switches
747(1)
17.3 Atom
748(1)
17.4 Electron and Hole Effective Mass
749(1)
17.5 Semiconductors
750(1)
17.6 Intrinsic Semiconductors
751(5)
17.7 Extrinsic Semiconductors
756(6)
17.7.1 n-Type Semiconductor
756(3)
17.7.2 p-Type Semiconductor
759(2)
17.7.3 Maximum Operating Temperature
761(1)
17.8 Wide Band Gap Semiconductors
762(2)
17.9 Physical Structure of Junction Diodes
764(4)
17.9.1 Formation of Depletion Layer
765(2)
17.9.2 Charge Transport
767(1)
17.10 Static I-V Diode Characteristic
768(4)
17.11 Breakdown Voltage of Junction Diodes
772(12)
17.11.1 Depletion-Layer Width
773(2)
17.11.2 Electric Field Intensity Distribution
775(4)
17.11.3 Avalanche Breakdown Voltage
779(2)
17.11.4 Punch-Through Breakdown Voltage
781(1)
17.11.5 Edge Terminations
782(2)
17.12 Capacitances of Junction Diodes
784(5)
17.12.1 Junction Capacitance
784(3)
17.12.2 Diffusion Capacitance
787(2)
17.13 Reverse Recovery of pn Junction Diodes
789(9)
17.13.1 Qualitative Description
789(1)
17.13.2 Reverse Recovery in Resistive Circuits
790(3)
17.13.3 Charge-Continuity Equation
793(3)
17.13.4 Reverse Recovery in Inductive Circuits
796(2)
17.14 Schottky Diodes
798(8)
17.14.1 Static I-V Characteristic of Schottky Diodes
801(1)
17.14.2 Breakdown Voltages of Schottky Diodes
802(1)
17.14.3 Junction Capacitance of Schottky Diodes
802(1)
17.14.4 Switching Characteristics of Schottky Diodes
802(4)
17.15 Solar Cells
806(3)
17.16 Light-Emitting Diodes
809(1)
17.17 SPICE Model of Diodes
810(1)
17.18 Summary
811(4)
References
815(1)
Review Questions
816(1)
Problems
817(2)
18 Silicon and Silicon-Carbide Power MOSFETs 819(72)
18.1 Introduction
819(1)
18.2 Integrated MOSFETs
819(1)
18.3 Physical Structure of Power MOSFETs
819(5)
18.4 Principle of Operation of Power MOSFETs
824(2)
18.4.1 Cutoff Region
824(1)
18.4.2 Formation of MOSFET Channel
824(1)
18.4.3 Linear Region
824(1)
18.4.4 Saturation Region
825(1)
18.4.5 Antiparallel Diode
825(1)
18.5 Derivation of Power MOSFET Characteristics
826(5)
18.5.1 Ohmic Region
826(3)
18.5.2 Pinch-off Region
829(1)
18.5.3 Channel-Length Modulation
830(1)
18.6 Power MOSFET Characteristics
831(2)
18.7 Mobility of Charge Carriers
833(13)
18.7.1 Effect of Doping Concentration on Mobility
834(2)
18.7.2 Effect of Temperature on Mobility
836(4)
18.7.3 Effect of Electric Field on Mobility
840(6)
18.8 Short-Channel Effects
846(2)
18.8.1 Ohmic Region
846(1)
18.8.2 Pinch-off Region
847(1)
18.9 Aspect Ratio of Power MOSFETs
848(2)
18.10 Breakdown Voltage of Power MOSFETs
850(2)
18.11 Gate Oxide Breakdown Voltage of Power MOSFETs
852(1)
18.12 Specific On-Resistance
852(3)
18.13 Figures-of-Merit of Semiconductors
855(2)
18.14 On-Resistance of Power MOSFETs
857(5)
18.14.1 Channel Resistance
857(1)
18.14.2 Accumulation Region Resistance
857(1)
18.14.3 Neck Region Resistance
858(1)
18.14.4 Drift Region Resistance
859(3)
18.15 Capacitances of Power MOSFETs
862(13)
18.15.1 Gate-to-Source Capacitance
862(2)
18.15.2 Drain-to-Source Capacitance
864(1)
18.15.3 Gate-to-Drain Capacitance
864(11)
18.16 Switching Waveforms
875(2)
18.17 SPICE Model of Power MOSFETs
877(2)
18.18 IGBTs
879(1)
18.19 Heat Sinks
880(6)
18.20 Summary
886(2)
References
888(1)
Review Questions
888(1)
Problems
889(2)
19 Electromagnetic Compatibility 891(16)
19.1 Introduction
891(1)
19.2 Definition of EMI
891(1)
19.3 Definition of EMC
892(1)
19.4 EMI Immunity
892(1)
19.5 EMI Susceptibility
893(1)
19.6 Classification of EMI
893(2)
19.7 Sources of EMI
895(1)
19.8 Safety Standards
896(1)
19.9 EMC Standards
896(1)
19.10 Near Field and Far Field
897(1)
19.11 Techniques of EMI Reduction
897(1)
19.12 Insertion Loss
898(1)
19.13 EMI Filters
898(2)
19.14 Feed-Through Capacitors
900(1)
19.15 EMI Shielding
900(2)
19.16 Interconnections
902(1)
19.17 Summary
903(1)
References
903(1)
Review Questions
903(1)
Problem
904(3)
A Introduction to SPICE 907(3)
B Introduction to MATLAB® 910(5)
C Physical Constants 915(2)
Answers to Problems 917(8)
Index 925
Marian K. Kazimierczuk Wright State University, Dayton, Ohio, USA