Muutke küpsiste eelistusi

Pulse Width Modulation for Power Converters: Principles and Practice [Kõva köide]

(Monash University), (University of Wisconsin at Madison)
  • Formaat: Hardback, 744 pages, kõrgus x laius x paksus: 239x160x48 mm, kaal: 1089 g
  • Sari: IEEE Press Series on Power and Energy Systems
  • Ilmumisaeg: 14-Oct-2003
  • Kirjastus: Wiley-IEEE Press
  • ISBN-10: 0471208140
  • ISBN-13: 9780471208143
Teised raamatud teemal:
  • Formaat: Hardback, 744 pages, kõrgus x laius x paksus: 239x160x48 mm, kaal: 1089 g
  • Sari: IEEE Press Series on Power and Energy Systems
  • Ilmumisaeg: 14-Oct-2003
  • Kirjastus: Wiley-IEEE Press
  • ISBN-10: 0471208140
  • ISBN-13: 9780471208143
Teised raamatud teemal:
Holmes (Department of Electrical and Computer Systems Engineering, Monash University, Australia) and Lipo (Department of Electrical and Computer Engineering, University of Wisconsin-Madison) explain fundamentals of pulse width modulation (PWM), looking at active switch pulse width determination, active switch pulse placement within a switching period, and active switch pulse sequence between phase legs and across switching periods. They offer a general approach to the development of fixed switching frequency pulse width-modulated strategies to suit hard-switched converters. Annotation (c) Book News, Inc., Portland, OR (booknews.com)

* The first single volume resource for researchers in the field who previously had to depend on separate papers and conference records to attain a working knowledge of the subject.
* Brings together the field's diverse approaches into an integrated and comprehensive theory of PWM
Preface xiii
Acknowledgments xiv
Nomenclature xv
Chapter 1 Introduction to Power Electronic Converters 1(56)
1.1 Basic Converter Topologies
2(5)
1.1.1 Switch Constraints
2(2)
1.1.2 Bidirectional Chopper
4(1)
1.1.3 Single-Phase Full-Bridge (H-Bridge) Inverter
5(2)
1.2 Voltage Source/Stiff Inverters
7(7)
1.2.1 Two-Phase Inverter Structure
7(1)
1.2.2 Three-Phase Inverter Structure
8(1)
1.2.3 Voltage and Current Waveforms in Square-Wave Mode
9(5)
1.3 Switching Function Representation of Three-Phase Converters
14(3)
1.4 Output Voltage Control
17(4)
1.4.1 Volts/Hertz Criterion
17(1)
1.4.2 Phase Shift Modulation for Single-Phase Inverter
17(2)
1.4.3 Voltage Control with a Double Bridge
19(2)
1.5 Current Source/Stiff Inverters
21(3)
1.6 Concept of a Space Vector
24(14)
1.6.1 d-q-0 Components for Three-Phase Sine Wave Source/Load
27(3)
1.6.2 d-q-0 Components for Voltage Source Inverter Operated in Square-Wave Mode
30(5)
1.6.3 Synchronously Rotating Reference Frame
35(3)
1.7 Three-Level Inverters
38(4)
1.8 Multilevel Inverter Topologies
42(13)
1.8.1 Diode-Clamped Multilevel Inverter
42(7)
1.8.2 Capacitor-Clamped Multilevel Inverter
49(2)
1.8.3 Cascaded Voltage Source Multilevel Inverter
51(3)
1.8.4 Hybrid Voltage Source Inverter
54(1)
1.9 Summary
55(2)
Chapter 2 Harmonic Distortion 57(38)
2.1 Harmonic Voltage Distortion Factor
57(4)
2.2 Harmonic Current Distortion Factor
61(3)
2.3 Harmonic Distortion Factors for Three-Phase Inverters
64(3)
2.4 Choice of Performance Indicator
67(3)
2.5 WTHD of Three-Level Inverter
70(3)
2.6 The Induction Motor Load
73(9)
2.6.1 Rectangular Squirrel Cage Bars
73(5)
2.6.2 Nonrectangular Rotor Bars
78(1)
2.6.3 Per-Phase Equivalent Circuit
79(3)
2.7 Harmonic Distortion Weighting Factors for Induction Motor Load
82(8)
2.7.1 WTHD for Frequency-Dependent Rotor Resistance
82(2)
2.7.2 WTHD Also Including Effect of Frequency-Dependent Rotor Leakage Inductance
84(4)
2.7.3 WTHD for Stator Copper Losses
88(2)
2.8 Example Calculation of Harmonic Losses
90(1)
2.9 WTHD Normalization for PWM Inverter Supply
91(2)
2.10 Summary
93(2)
Chapter 3 Modulation of One Inverter Phase Leg 95(60)
3.1 Fundamental Concepts of PWM
96(1)
3.2 Evaluation of PWM Schemes
97(2)
3.3 Double Fourier Integral Analysis of a Two-Level Pulse Width Modulated Waveform
99(6)
3.4 Naturally Sampled Pulse Width Modulation
105(15)
3.4.1 Sine-Sawtooth Modulation
105(9)
3.4.2 Sine-Triangle Modulation
114(6)
3.5 PWM Analysis by Duty Cycle Variation
120(5)
3.5.1 Sine-Sawtooth Modulation
120(3)
3.5.2 Sine-Triangle Modulation
123(2)
3.6 Regular Sampled Pulse Width Modulation
125(21)
3.6.1 Sawtooth Carrier Regular Sampled PWM
130(4)
3.6.2 Symmetrical Regular Sampled PWM
134(5)
3.6.3 Asymmetrical Regular Sampled PWM
139(7)
3.7 "Direct" Modulation
146(2)
3.8 Integer versus Non-Integer Frequency Ratios
148(2)
3.9 Review of PWM Variations
150(2)
3.10 Summary
152(3)
Chapter 4 Modulation of Single-Phase Voltage Source Inverters 155(60)
4.1 Topology of a Single-Phase Inverter
156(1)
4.2 Three-Level Modulation of a Single-Phase Inverter
157(12)
4.3 Analytic Calculation of Harmonic Losses
169(8)
4.4 Sideband Modulation
177(6)
4.5 Switched Pulse Position
183(17)
4.5.1 Continuous Modulation
184(2)
4.5.2 Discontinuous Modulation
186(14)
4.6 Switched Pulse Sequence
200(11)
4.6.1 Discontinuous PWM - Single-Phase Leg Switched
200(7)
4.6.2 Two-Level Single-Phase PWM
207(4)
4.7 Summary
211(4)
Chapter 5 Modulation of Three-Phase Voltage Source Inverters 215(44)
5.1 Topology of a Three-Phase Inverter (VSI)
215(1)
5.2 Three-Phase Modulation with Sinusoidal References
216(10)
5.3 Third-Harmonic Reference Injection
226(15)
5.3.1 Optimum Injection Level
226(4)
5.3.2 Analytical Solution for Third-Harmonic Injection
230(11)
5.4 Analytic Calculation of Harmonic Losses
241(9)
5.5 Discontinuous Modulation Strategies
250(1)
5.6 Triplen Carrier Ratios and Subharmonics
251(6)
5.6.1 Triplen Carrier Ratios
251(2)
5.6.2 Subharmonics
253(4)
5.7 Summary
257(2)
Chapter 6 Zero Space Vector Placement Modulation Strategies 259(78)
6.1 Space Vector Modulation
259(8)
6.1.1 Principles of Space Vector Modulation
259(6)
6.1.2 SVM Compared to Regular Sampled PWM
265(2)
6.2 Phase Leg References for Space Vector Modulation
267(3)
6.3 Naturally Sampled SVM
270(2)
6.4 Analytical Solution for SVM
272(19)
6.5 Harmonic Losses for SVM
291(3)
6.6 Placement of the Zero Space Vector
294(5)
6.7 Discontinuous Modulation
299(8)
6.7.1 120° Discontinuous Modulation
299(3)
6.7.2 60° and 30° Discontinuous Modulation
302(5)
6.8 Phase Leg References for Discontinuous PWM
307(4)
6.9 Analytical Solutions for Discontinuous PWM
311(11)
6.10 Comparison of Harmonic Performance
322(4)
6.11 Harmonic Losses for Discontinuous PWM
326(4)
6.12 Single-Edge SVM
330(1)
6.13 Switched Pulse Sequence
331(2)
6.14 Summary
333(4)
Chapter 7 Modulation of Current Source Inverters 337(12)
7.1 Three-Phase Modulators as State Machines
338(5)
7.2 Naturally Sampled CSI Space Vector Modulator
343(1)
7.3 Experimental Confirmation
343(2)
7.4 Summary
345(4)
Chapter 8 Overmodulation of an Inverter 349(34)
8.1 The Overmodulation Region
350(1)
8.2 Naturally Sampled Overmodulation of One Phase Leg of an Inverter
351(5)
8.3 Regular Sampled Overmodulation of One Phase Leg of an Inverter
356(4)
8.4 Naturally Sampled Overmodulation of Single- and Three-Phase Inverters
360(4)
8.5 PWM Controller Gain during Overmodulation
364(12)
8.5.1 Gain with Sinusoidal Reference
364(3)
8.5.2 Gain with Space Vector Reference
367(4)
8.5.3 Gain with 60° Discontinuous Reference
371(2)
8.5.4 Compensated Modulation
373(3)
8.6 Space Vector Approach to Overmodulation
376(6)
8.7 Summary
382(1)
Chapter 9 Programmed Modulation Strategies 383(50)
9.1 Optimized Space Vector Modulation
384(12)
9.2 Harmonic Elimination PWM
396(15)
9.3 Performance Index for Optimality
411(5)
9.4 Optimum PWM
416(5)
9.5 Minimum-Loss PWM
421(9)
9.6 Summary
430(3)
Chapter 10 Programmed Modulation of Multilevel Converters 433(20)
10.1 Multilevel Converter Alternatives
433(3)
10.2 Block Switching Approaches to Voltage Control
436(4)
10.3 Harmonic Elimination Applied to Multilevel Inverters
440(7)
10.3.1 Switching Angles for Harmonic Elimination Assuming Equal Voltage Levels
440(1)
10.3.2 Equalization of Voltage and Current Stresses
441(2)
10.3.3 Switching Angles for Harmonic Elimination Assuming Unequal Voltage Levels
443(4)
10.4 Minimum Harmonic Distortion
447(2)
10.5 Summary
449(4)
Chapter 11 Carrier-Based PWM of Multilevel Inverters 453(78)
11.1 PWM of Cascaded Single-Phase H-Bridges
453(12)
11.2 Overmodulation of Cascaded H-Bridges
465(2)
11.3 PWM Alternatives for Diode-Clamped Multilevel Inverters
467(2)
11.4 Three-Level Naturally Sampled PD PWM
469(12)
11.4.1 Contour Plot for Three-Level PD PWM
469(4)
11.4.2 Double Fourier Series Harmonic Coefficients
473(2)
11.4.3 Evaluation of the Harmonic Coefficients
475(4)
11.4.4 Spectral Performance of Three-Level PD PWM
479(2)
11.5 Three-Level Naturally Sampled APOD or POD PWM
481(3)
11.6 Overmodulation of Three-Level Inverters
484(5)
11.7 Five-Level PWM for Diode-Clamped Inverters
489(10)
11.7.1 Five-level Naturally Sampled PD PWM
489(3)
11.7.2 Five-Level Naturally Sampled APOD PWM
492(5)
11.7.3 Five-Level POD PWM
497(2)
11.8 PWM of Higher Level Inverters
499(5)
11.9 Equivalent PD PWM for Cascaded Inverters
504(3)
11.10 Hybrid Multilevel Inverter
507(10)
11.11 Equivalent PD PWM for a Hybrid Inverter
517(2)
11.12 Third-Harmonic Injection for Multilevel Inverters
519(7)
11.13 Operation of a Multilevel Inverter with a Variable Modulation Index
526(2)
11.14 Summary
528(3)
Chapter 12 Space Vector PWM for Multilevel Converters 531(24)
12.1 Optimized Space Vector Sequences
531(3)
12.2 Modulator for Selecting Switching States
534(1)
12.3 Decomposition Method
535(3)
12.4 Hexagonal Coordinate System
538(5)
12.5 Optimal Space Vector Position within a Switching Period
543(2)
12.6 Comparison of Space Vector PWM to Carrier-Based PWM
545(3)
12.7 Discontinuous Modulation in Multilevel Inverters
548(2)
12.8 Summary
550(5)
Chapter 13 Implementation of a Modulation Controller 555(30)
13.1 Overview of a Power Electronic Conversion System
556(1)
13.2 Elements of a PWM Converter System
557(15)
13.2.1 VSI Power Conversion Stage
563(2)
13.2.2 Gate Driver Interface
565(2)
13.2.3 Controller Power Supply
567(1)
13.2.4 I/O Conditioning Circuitry
568(1)
13.2.5 PWM Controller
569(3)
13.3 Hardware Implementation of the PWM Process
572(7)
13.3.1 Analog versus Digital Implementation
572(2)
13.3.2 Digital Timer Logic Structures
574(5)
13.4 PWM Software Implementation
579(5)
13.4.1 Background Software
580(1)
13.4.2 Calculation of the PWM Timing Intervals
581(3)
13.5 Summary
584(1)
Chapter 14 Continuing Developments in Modulation 585(38)
14.1 Random Pulse Width Modulation
586(4)
14.2 PWM Rectifier with Voltage Unbalance
590(8)
14.3 Common Mode Elimination
598(5)
14.4 Four Phase Leg Inverter Modulation
603(4)
14.5 Effect of Minimum Pulse Width
607(5)
14.6 PWM Dead-Time Compensation
612(7)
14.7 Summary
619(4)
Appendix 1 Fourier Series Representation of a Double Variable Controlled Waveform 623(6)
Appendix 2 Jacobi-Anger and Bessel Function Relationships 629(6)
A2.1 Jacobi-Anger Expansions
629(2)
A2.2 Bessel Function Integral Relationships
631(4)
Appendix 3 Three-Phase and Half-Cycle Symmetry Relationships 635(2)
Appendix 4 Overmodulation of a Single-Phase Leg 637(26)
A4.1 Naturally Sampled Double-Edge PWM
637(12)
A4.1.1 Evaluation of Double Fourier Integral for Overmodulated Naturally Sampled PWM
638(8)
A4.1.2 Harmonic Solution for Overmodulated Single-Phase Leg under Naturally Sampled PWM
646(1)
A4.1.3 Linear Modulation Solution Obtained from Overmodulation Solution
647(1)
A4.1.4 Square-Wave Solution Obtained from Overmodulation Solution
647(2)
A4.2 Symmetric Regular Sampled Double-Edge PWM
649(5)
A4.2.1 Evaluation of Double Fourier Integral for Overmodulated Symmetric Regular Sampled PWM
650(2)
A4.2.2 Harmonic Solution for Overmodulated Single-Phase Leg under Symmetric Regular Sampled PWM
652(1)
A4.2.3 Linear Modulation Solution Obtained from Overmodulation Solution
653(1)
A4.3 Asymmetric Regular Sampled Double-Edge PWM
654(9)
A4.3.1 Evaluation of Double Fourier Integral for Overmodulated Asymmetric Regular Sampled PWM
655(5)
A4.3.2 Harmonic Solution for Overmodulated Single-Phase Leg under Asymmetric Regular Sampled PWM
660(1)
A4.3.3 Linear Modulation Solution Obtained from Overmodulation Solution
661(2)
Appendix 5 Numeric Integration of a Double Fourier Series Representation of a Switched Waveform 663(8)
A5.1 Formulation of the Double Fourier Integral
663(3)
A5.2 Analytical Solution of the Inner Integral
666(2)
A5.3 Numeric Integration of the Outer Integral
668(3)
Bibliography 671(44)
Index 715


D. GRAHAME HOLMES is a professor in the Department of Electrical and Computer Systems Engineering at Monash University, Australia. THOMAS A. LIPO is a professor in the Department of Electrical and Computer Engineering at the University of WisconsinMadison.