Muutke küpsiste eelistusi

Pulsewidth Modulated DC-to-DC Power Conversion: Circuits, Dynamics, and Control Designs [Kõva köide]

(University of Southhampton)
  • Formaat: Hardback, 664 pages, kõrgus x laius x paksus: 241x165x34 mm, kaal: 1057 g
  • Ilmumisaeg: 05-Sep-2013
  • Kirjastus: Wiley-IEEE Press
  • ISBN-10: 1118180631
  • ISBN-13: 9781118180631
Teised raamatud teemal:
  • Kõva köide
  • Hind: 163,90 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 664 pages, kõrgus x laius x paksus: 241x165x34 mm, kaal: 1057 g
  • Ilmumisaeg: 05-Sep-2013
  • Kirjastus: Wiley-IEEE Press
  • ISBN-10: 1118180631
  • ISBN-13: 9781118180631
Teised raamatud teemal:
Choi (electrical engineering and computer science, Kyungpook National U., Korea) provides a textbook for undergraduate students beginning the study of power electronics, supplementing textbooks with a more detailed treatment of pulsewidth modulated conversion of direct current to direct current electricity. It can also serve as a reference for more advanced students and for engineers engaged in modeling, analyzing and controlling converters. Among the topics are power stage components, buck converter, power stage transfer functions, closed-loop performance and feedback compensation, and current mode control. Annotation ©2013 Book News, Inc., Portland, OR (booknews.com)

This book provides engineers in the power electronics field with complete guidance to pulsewidth modulated (PWM) DC-to-DC power converters. It explains the circuit and operation of PWM DC-to-DC converters and their dynamic characteristics along with in-depth discussion of the current mode control scheme for PWM DC-to-DC converters. Topics include the functional basics, dynamic modeling and analysis, compensation design, and applications of current mode control. Fully tested problems and simulation examples are included, as well as downloadable lecture slides and ready-to-run PSpice programs.
Preface vii
Part I Circuits For Dc-To-Dc Power Conversion
1 PWM Dc-to-Dc Power Conversion
3(10)
1.1 PWM Dc-to-Dc Power Conversion
4(3)
1.1.1 Dc-to-Dc Power Conversion
4(2)
1.1.2 PWM Technique
6(1)
1.2 Dc-to-Dc Power Conversion System
7(1)
1.3 Features and Issues of PWM Dc-to-Dc Converter
8(3)
1.4
Chapter Highlights
11(1)
References
12(1)
2 Power Stage Components
13(58)
2.1 Semiconductor Switches
13(4)
2.1.1 MOSFETs
14(1)
2.1.2 Diodes
15(1)
2.1.3 MOSFET-Diode Pair as SPDT Switch
16(1)
2.2 Energy Storage and Transfer Devices
17(22)
2.2.1 Inductors
18(8)
2.2.2 Capacitors
26(5)
2.2.3 Transformers
31(8)
2.3 Switching Circuits in Practice
39(11)
2.3.1 Solenoid Drive Circuits
39(6)
2.3.2 Capacitor Charging Circuit
45(5)
2.4 Summary
50(1)
References
51(1)
Problems
52(19)
3 Buck Converter
71(52)
3.1 Ideal Step-Down Dc-to-Dc Power Conversion
72(2)
3.2 Buck Converter: Step-Down Dc-to-Dc Converter
74(4)
3.2.1 Evolution to Buck Converter
74(1)
3.2.2 Frequency-Domain Analysis
75(3)
3.3 Buck Converter in Start-Up Transient
78(2)
3.3.1 Piecewise Linear Analysis
78(1)
3.3.2 Start-up Response
78(2)
3.4 Buck Converter in Steady State
80(9)
3.4.1 Circuit Analysis Techniques
80(2)
3.4.2 Steady-State Analysis
82(2)
3.4.3 Estimation of Output Voltage Ripple
84(5)
3.5 Buck Converter in Discontinuous Conduction Mode
89(10)
3.5.1 Origin of Discontinuous Conduction Mode Operation
90(2)
3.5.2 Conditions for DCM Operation
92(2)
3.5.3 Steady-State Operation in DCM
94(5)
3.6 Closed-Loop Control of Buck Converter
99(10)
3.6.1 Closed-Loop Feedback Controller
99(4)
3.6.2 Responses of Closed-Loop Controlled Buck Converter
103(6)
3.7 Summary
109(1)
References
110(1)
Problems
110(13)
4 Dc-to-Dc Power Converter Circuits
123(76)
4.1 Boost Converter
124(11)
4.1.1 Evolution to Boost Converter
124(2)
4.1.2 Steady-State Analysis in CCM
126(4)
4.1.3 Steady-State Analysis in DCM
130(2)
4.1.4 Effects of Parasitic Resistance on Voltage Gain
132(3)
4.2 Buck/Boost Converter
135(8)
4.2.1 Evolution to Buck/Boost Converter
137(1)
4.2.2 Steady-State Analysis in CCM
137(4)
4.2.3 Steady-State Analysis in DCM
141(2)
4.3 Structure and Voltage Gain of Three Basic Converters
143(2)
4.4 Flyback Converter: Transformer-Isolated Buck/Boost Converter
145(8)
4.4.1 Evolution to Flyback Converter
145(2)
4.4.2 Steady-State Analysis in CCM
147(3)
4.4.3 Steady-State Analysis in DCM
150(3)
4.5 Bridge-Type Buck-Derived Isolated Dc-to-Dc Converters
153(14)
4.5.1 Switch Network and Multi-Winding Transformer
154(3)
4.5.2 Full-Bridge Converter
157(6)
4.5.3 Half-Bridge Converter
163(1)
4.5.4 Push-Pull Converter
163(4)
4.6 Forward Converters
167(10)
4.6.1 Basic Operational Principles
167(5)
4.6.2 Tertiary-Winding Reset Forward Converter
172(5)
4.6.3 Two-Switch Forward Converter
177(1)
4.7 Summary
177(3)
References
180(1)
Problems
181(18)
Part II Modeling, Dynamics, And Design Of PWM Dc-To-Dc Converters
5 Modeling PWM Dc-to-Dc Converters
199(46)
5.1 Overview of PWM Converter Modeling
200(2)
5.2 Averaging Power Stage Dynamics
202(19)
5.2.1 State-Space Averaging
204(6)
5.2.2 Circuit Averaging
210(9)
5.2.3 Generalization of Circuit Averaging Technique
219(1)
5.2.4 Circuit Averaging and State-Space Averaging
220(1)
5.3 Linearizing Averaged Power Stage Dynamics
221(6)
5.3.1 Linearization of Nonlinear Function and Small-Signal Model
221(2)
5.3.2 Small-Signal Model for PWM Switch-PWM Switch Model
223(3)
5.3.3 Small-Signal Model of Converter Power Stage
226(1)
5.4 Frequency Response of Converter Power Stage
227(5)
5.4.1 Sinusoidal Response of Power Stage
228(2)
5.4.2 Frequency Response and s-Domain Small-Signal Model of Power Stage
230(2)
5.5 Small-Signal Gain of PWM Block
232(2)
5.6 Small-Signal Model for PWM Dc-to-Dc Converters
234(4)
5.6.1 Voltage Feedback Circuit
234(2)
5.6.2 Small-Signal Model for PWM Converters
236(2)
5.7 Summary
238(1)
References
239(1)
Problems
239(6)
6 Power Stage Transfer Functions
245(52)
6.1 Bode Plot for Transfer Functions
245(19)
6.1.1 Basic Definitions
246(2)
6.1.2 Bode Plots for Multiplication Factors
248(9)
6.1.3 Bode Plot Construction for Transfer Functions
257(5)
6.1.4 Identification of Transfer Function from Bode Plot
262(2)
6.2 Power Stage Transfer Functions of Buck Converter
264(7)
6.2.1 Input-to-Output Transfer Function
265(3)
6.2.2 Duty Ratio-to-Output Transfer Function
268(2)
6.2.3 Load Current-to-Output Transfer Function
270(1)
6.3 Power Stage Transfer Functions of Boost Converter
271(10)
6.3.1 Input-to-Output Transfer Function
272(1)
6.3.2 Duty Ratio-to-Output Transfer Function and RHP Zero
273(4)
6.3.3 Load Current-to-Output Transfer Function
277(1)
6.3.4 Physical Origin of RHP Zero
278(3)
6.4 Power Stage Transfer Functions of Buck/Boost Converter
281(2)
6.5 Empirical Methods for Small-Signal Analysis
283(3)
6.6 Summary
286(1)
References
287(2)
Problems
289(8)
7 Dynamic Performance of PWM DC-to-DC Converters
297(34)
7.1 Stability
298(3)
7.2 Frequency-Domain Performance Criteria
301(3)
7.2.1 Loop Gain
301(1)
7.2.2 Audio-Susceptibility
302(1)
7.2.3 Output Impedance
303(1)
7.3 Time-Domain Performance Criteria
304(3)
7.3.1 Step Load Response
305(1)
7.3.2 Step Input Response
306(1)
7.4 Stability of DC-to-DC Converters
307(1)
7.4.1 Stability of Linear Time-Invariant Systems
307(1)
7.4.2 Small-Signal Stability of DC-to-DC Converters
307(1)
7.5 Nyquist Criterion
308(7)
7.6 Relative Stability: Gain Margin and Phase Margin
315(7)
7.7 Summary
322(1)
References
323(1)
Problems
324(7)
8 Closed-Loop Performance and Feedback Compensation
331(76)
8.1 Asymptotic Analysis Method
332(7)
8.1.1 Concept of Asymptotic Analysis Method
332(2)
8.1.2 Examples of Asymptotic Analysis Method
334(5)
8.2 Frequency-Domain Performance
339(5)
8.2.1 Audio-Susceptibility
340(3)
8.2.2 Output Impedance
343(1)
8.3 Voltage Feedback Compensation and Loop Gain
344(5)
8.3.1 Problems of Single Integrator
345(2)
8.3.2 Voltage Feedback Compensation
347(2)
8.4 Compensation Design and Closed-Loop Performance
349(34)
8.4.1 Voltage Feedback Compensation and Loop Gain
349(3)
8.4.2 Feedback Compensation Design Guidelines
352(1)
8.4.3 Voltage Feedback Compensation and Closed-Loop Performance
353(14)
8.4.4 Phase Margin and Closed-Loop Performance
367(5)
8.4.5 Compensation Zeros and Speed of Transient Responses
372(2)
8.4.6 Step Load Response
374(5)
8.4.7 Non-Minimum Phase System Case: Boost and Buck/Boost Converters
379(4)
8.5 Summary
383(2)
References
385(1)
Problems
385(22)
9 Practical Considerations in Modeling, Analysis, and Design of PWM Converters
407(58)
9.1 Generalization of PWM Converter Model
408(23)
9.1.1 Converter Modeling with Parasitic Resistances
408(7)
9.1.2 Modeling and Analysis of PWM Converters in DCM Operation
415(10)
9.1.3 Modeling of Isolated PWM Converters
425(6)
9.2 Design and Analysis of DC-to-DC Converters with Practical Source System
431(18)
9.2.1 Audio-Susceptibility Analysis
432(2)
9.2.2 Stability Analysis
434(7)
9.2.3 Input Impedance of Regulated Dc-to-Dc Converter
441(5)
9.2.4 Origin of Source-Impedance Induced Instability
446(1)
9.2.5 Control Design with Source Impedance
447(1)
9.2.6 Impacts of Source Impedance on Loop Gain and Output Impedance
448(1)
9.3 Consideration for Non-Resistive Load
449(3)
9.4 Summary
452(1)
References
453(1)
Problems
454(11)
Part III Current Mode Control
10 Current Mode Control - Functional Basics and Classical Analysis
465(94)
10.1 Current Mode Control Basics
466(13)
10.1.1 Evolution to Peak Current Mode Control
466(9)
10.1.2 Benefits and Issues of Peak Current Mode Control
475(1)
10.1.3 Average Current Mode Control and Charge Control
476(3)
10.2 Classical Analysis and Control Design Procedures
479(30)
10.2.1 Small-Signal Model for Peak Current Mode Control
480(6)
10.2.2 Loop Gain Analysis
486(3)
10.2.3 Stability Analysis
489(3)
10.2.4 Voltage Feedback Compensation
492(5)
10.2.5 Control Design Procedures
497(10)
10.2.6 Analysis of Converter Dynamics in DCM
507(2)
10.3 Closed-Loop Performance of Peak Current Mode Control
509(23)
10.3.1 Audio-Susceptibility Analysis
511(5)
10.3.2 Output Impedance Analysis
516(4)
10.3.3 Step Load Response Analysis
520(12)
10.4 Current Mode Control for Boost and Buck/Boost Converters
532(16)
10.4.1 Stability Analysis and Control Design
532(11)
10.4.2 Loop Gain Analysis
543(5)
10.5 Summary
548(2)
References
550(1)
Problems
550(9)
11 Current Mode Control - Sampling Effects and New Control Design Procedures
559(74)
11.1 Sampling Effects of Current Mode Control
560(8)
11.1.1 Origin and Consequence of Sampling Effects
561(3)
11.1.2 Modeling Methodology for Sampling Effects
564(1)
11.1.3 Feedforward Gains
564(1)
11.1.4 Complete s-Domain Model for Current Mode Control
565(1)
11.1.5 Two Prevalent s-Domain Models for Current Mode Control
565(3)
11.2 Expressions for s-Domain Model for Current Mode Control
568(16)
11.2.1 Modified Small-Signal Model
568(2)
11.2.2 Modulator Gain Fm
570(1)
11.2.3 He(s): s-Domain Representation of Sampling Effects
571(9)
11.2.4 Feedforward Gains
580(4)
11.3 New Control Design Procedures for Current Mode Control
584(28)
11.3.1 New Power Stage Model
584(2)
11.3.2 Control-to-Output Transfer Function with Current Loop Closed
586(6)
11.3.3 Control Design Procedures
592(14)
11.3.4 Correlation between New and Classical Design Procedures
606(6)
11.4 Off-Line Flyback Converter with Optocoupler-Isolated Current Mode Control
612(16)
11.4.1 Off-Line Power Supplies
612(1)
11.4.2 Current Mode Control for Flyback Converter with Optocoupler-Isolated Feedback
613(15)
11.5 Summary
628(1)
References
629(1)
Problems
629(4)
Index 633
BYUNGCHO CHOI is a professor in the School of Electrical Engineering and Computer Science at Kyungpook National University, Daegu, Korea. He received his PhD from Virginia Polytechnic Institute and State University, Blacksburg, Virginia. Over the past twenty years, Dr. Choi has been teaching and doing research in the area of PWM DC-to-DC power conversion.