Muutke küpsiste eelistusi

Pulsewidth Modulated DC-to-DC Power Conversion: Circuits, Dynamics, Control, and DC Power Distribution Systems 2nd edition [Kõva köide]

(University of Southhampton)
  • Formaat: Hardback, 720 pages, kõrgus x laius x paksus: 10x10x10 mm, kaal: 454 g
  • Ilmumisaeg: 29-Oct-2021
  • Kirjastus: Wiley-IEEE Press
  • ISBN-10: 111945445X
  • ISBN-13: 9781119454458
Teised raamatud teemal:
  • Formaat: Hardback, 720 pages, kõrgus x laius x paksus: 10x10x10 mm, kaal: 454 g
  • Ilmumisaeg: 29-Oct-2021
  • Kirjastus: Wiley-IEEE Press
  • ISBN-10: 111945445X
  • ISBN-13: 9781119454458
Teised raamatud teemal:

Explore a fully updated reference for professional and student engineers working with pulsewidth modulated DC-to-DC power conversion 

The newly revised Second Edition of Pulsewidth Modulated DC-to-DC Power Conversion: Circuits, Dynamics, and Control Designs delivers a comprehensive exploration of pulsewidth modulated DC-to-DC converters for analysis and design as standalone converters and as an interconnected system. The book begins with discussions of the circuits, dynamics, and control of standalone PWM converters before moving on to examine the dynamic analysis and system design of DC power distribution systems. 

The distinguished authors balance theory with the practical aspects of DC-to-DC power conversion based on classical linear system theory. They include new information on the generalization of power stage modeling, the Nyquist criterion, and universal small-signal models for PWM DC-to-DC converters. The book also includes supplemental material, like a solutions manual, lecture slides, and PSpice source codes for over 250 PSpice programs for illustrative simulations. Readers will also benefit from the inclusion of: 

  • A thorough introduction to PWM DC-to-DC power conversion, power stage components, and buck converters 
  • An exploration of DC-to-DC power converter circuits, including boost converters, three basic converters, and flyback converters 
  • Discussions of the modeling and dynamics of PWM converters, including power stage transfer functions and the dynamic performance of PWM DC-to-DC converters 
  • An examination of control schemes and converter performance, including closed-loop performance and feedback compensation 

Perfect for senior undergraduate students in departments of electrical engineering or electronics, Pulsewidth Modulated DC-to-DC Power Conversion will also earn a place in the libraries of graduate students and practitioners of power electronics or electrical energy conversions, as well as analog/digital circuit engineers. 

Author Biography xix
Preface xxi
1 PWM Dc-to-Dc Power Conversion
1(12)
1.1 PWM Dc-to-Dc Power Conversion
1(2)
1.1.1 Dc-to-Dc Power Conversion
1(2)
1.1.2 PWM Technique
3(1)
1.2 Standalone Dc-to-Dc Power Conversion System
3(2)
1.2.1 Dc Source with Non-ideal Characteristics
4(1)
1.2.2 Dc-to-Dc Converter as Voltage Source
4(1)
1.2.3 Load as Dynamic Current Sink
5(1)
1.3 Features and Issues of PWM Dc-to-Dc Converter
5(1)
1.3.1 Dc-to-Dc Power Converter Circuits
5(1)
1.3.2 Dynamic Modeling and Analysis
5(1)
1.3.3 Dynamic Performance and Control Design
6(1)
1.4 Dc Power Distribution Systems
6(3)
1.4.1 Structure of Dc Power Distribution Systems
7(1)
1.4.2 Issues in Dc Power Distribution System Analysis and Design
8(1)
1.5
Chapter Highlights
9(4)
1.5.1 Part I: Dc-to-Dc Converter Circuits
9(1)
1.5.2 Part II: Modeling and Dynamics of PWM Converters
9(1)
1.5.3 Part III: Control Schemes and Converter Performance
10(1)
1.5.4 Part IV: Dc Power Distribution Systems
10(3)
Part I Dc-to-Dc Power Converter Circuits
13(114)
2 Buck Converter
15(48)
2.1 Ideal Step-Down Dc-to-Dc Power Conversion
15(2)
2.2 Buck Converter: Step-Down Dc-to-Dc Converter
17(5)
2.2.1 Evolution to Buck Converter
17(1)
2.2.2 Frequency-Domain Analysis
18(4)
2.3 Buck Converter in Start-up Transient
22(3)
2.3.1 Piecewise Linear Analysis
23(1)
2.3.2 Start-up Response
23(2)
2.4 Buck Converter in Steady State
25(8)
2.4.1 Circuit Analysis Techniques
25(1)
2.4.1.1 Piecewise Linear Analysis
25(1)
2.4.1.2 Small-Ripple Approximation
25(1)
2.4.1.3 Flux Linkage Balance Condition and Charge Balance Condition
25(1)
2.4.2 Steady-State Analysis
26(2)
2.4.3 Evaluation of Output Voltage Ripple
28(1)
2.4.3.1 Evaluation with Ideal Capacitor
29(1)
2.4.3.2 Effects of Parasitic Resistance of Capacitor
30(3)
2.5 Buck Converter in Discontinuous Conduction Mode
33(7)
2.5.1 Origin of Discontinuous Conduction Mode Operation
33(1)
2.5.2 Conditions for DCM Operation
34(2)
2.5.3 Steady-State Operation in DCM
36(4)
2.6 Closed-Loop Control of Buck Converter
40(9)
2.6.1 Closed-Loop Feedback Controller
41(1)
2.6.1.1 Pulsewidth Modulation
41(1)
2.6.1.2 Voltage Feedback Circuit
42(2)
2.6.2 Transient Responses of Closed-Loop Controlled Buck Converter
44(1)
2.6.2.1 Step Input Response
45(2)
2.6.2.2 Step Load Response
47(1)
2.6.2.3 Operational Mode Change Response
48(1)
2.1
Chapter Summary
49(14)
Problems
50(13)
3 Dc-to-Dc Power Converter Circuits
63(64)
3.1 Boost Converter
63(10)
3.1.1 Evolution to Boost Converter
64(1)
3.1.2 Steady-State Analysis in CCM
65(1)
3.1.2.1 Steady-State Operation in CCM
65(2)
3.1.2.2 Estimation of Output Voltage Ripple
67(2)
3.1.3 Steady-State Analysis in DCM
69(2)
3.1.4 Effects of Parasitic Resistance on Voltage Gain
71(2)
3.2 Buck/Boost Converter
73(7)
3.2.1 Evolution to Buck/Boost Converter
74(1)
3.2.2 Steady-State Analysis in CCM
75(1)
3.2.2.1 Steady-State Operation in CCM
75(2)
3.2.2.2 Estimation of Output Voltage Ripple
77(1)
3.2.3 Steady-State Analysis in DCM
78(2)
3.3 Three Basic Converters
80(2)
3.3.1 Structure and Operation of Three Basic Converters
80(1)
3.3.2 Voltage Gain of Three Basic Converters
81(1)
3.4 Flyback Converter: Transformer-Isolated Buck/Boost Converter
82(6)
3.4.1 Evolution to Flyback Converter
82(1)
3.4.2 Steady-State Analysis in CCM
83(3)
3.4.3 Steady-State Analysis in DCM
86(2)
3.5 Bridge-Type Buck-Derived Isolated Dc-to-Dc Converters
88(11)
3.5.1 Switch Network and Multi-Winding Transformer
90(1)
3.5.1.1 Switch Network Structure
90(1)
3.5.1.2 Circuit Models for Multi-winding Transformers
90(3)
3.5.2 Full-Bridge Converter
93(1)
3.5.2.1 Operation with Ideal Transformer
94(1)
3.5.2.2 Effects of Magnetizing Inductance
95(2)
3.5.3 Half-Bridge Converter
97(1)
3.5.4 Push--Pull Converter
97(2)
3.6 Forward Converters
99(10)
3.6.1 Basic Operational Principles
99(3)
3.6.1.1 Reset Problem and Reset Circuit
102(1)
3.6.1.2 Switch Network with Zener Diode Reset
102(1)
3.6.1.3 Switch Network with Tertiary Winding Reset
103(2)
3.6.2 Tertiary-Winding Reset Forward Converter
105(3)
3.6.3 Two-Switch Forward Converter
108(1)
3.7
Chapter Summary
109(18)
Reference
112(1)
Problems
112(15)
Part II Modeling and Dynamics of PWM Converters
127(160)
4 Modeling PWM Dc-to-Dc Converters
129(58)
4.1 Overview of PWM Converter Modeling
130(2)
4.1.1 Power Stage Modeling
130(1)
4.1.2 PWM Block Modeling
131(1)
4.1.3 Voltage Feedback Circuit and Small-Signal Model of PWM Converter
131(1)
4.2 Averaging Power Stage Dynamics
132(14)
4.2.1 State-Space Averaging Method
133(1)
4.2.1.1 Switched State-Space Model and Switching Function
133(2)
4.2.1.2 Continuous Duty Ratio and Averaged State-Space Model
135(3)
4.2.2 Circuit Averaging Technique
138(1)
4.2.2.1 Averaging Switch Drive Signal
138(1)
4.2.2.2 Procedure of Circuit Averaging
139(1)
4.2.2.3 PWM Switch
139(2)
4.2.2.4 Averaging PWM Switch
141(2)
4.2.2.5 Average Models for Three Basic PWM Converters
143(3)
4.2.3 Circuit Averaging and State-Space Averaging
146(1)
4.3 Linearizing Averaged Power Stage Dynamics
146(8)
4.3.1 Linearization of Nonlinear Function and Small-Signal Model
147(1)
4.3.1.1 Single-Variable Nonlinear Functions
147(2)
4.3.1.2 Multiple-Variable Nonlinear Functions
149(1)
4.3.2 Small-Signal Model of PWM Switch - The PWM Switch Model
150(1)
4.3.3 Small-Signal Model of Converter Power Stage
151(3)
4.4 Frequency Response of Converter Power Stage
154(4)
4.4.1 Sinusoidal Response of Power Stage
154(2)
4.4.2 Frequency Response and s-domain Small-Signal Model
156(2)
4.5 Generalization of Power Stage Modeling
158(12)
4.5.1 Power Stage Modeling with Parasitic Resistances
159(1)
4.5.1.1 Buck Converter with Ideal Voltage Source
159(1)
4.5.1.2 Buck Converter with Input Filter
160(2)
4.5.1.3 Linearization of Averaged PWM Switch Equation
162(2)
4.5.1.4 Predictions of Refined Small-Signal Model
164(1)
4.5.2 Modeling PWM Converters in DCM Operation
165(1)
4.5.2.1 Averaged Equations for PWM Switch in DCM
165(2)
4.5.2.2 Linearization of Averaged Equation and Small-Signal Circuit Model
167(1)
4.5.3 Modeling Isolated PWM Converters
167(1)
4.5.3.1 Modeling Forward Converter and Bridge-Type Converters
168(2)
4.5.3.2 Modeling Flyback Converter
170(1)
4.6 Small-Signal Gain of PWM Block
170(3)
4.7 Universal Small-Signal Model for PWM Dc-to-Dc Converters
173(4)
4.7.1 Voltage Feedback Circuit
174(1)
4.7.1.1 Output Voltage Control
174(1)
4.7.1.2 Voltage Feedback Compensation
175(1)
4.7.2 Universal Small-Signal Model for PWM Converters
175(2)
4.8
Chapter Summary
177(10)
References
178(1)
Problems
178(9)
5 Power Stage Transfer Functions
187(54)
5.1 Bode Plot for Transfer Functions
187(16)
5.1.1 Basic Definitions
187(1)
5.1.1.1 Transfer Function
187(1)
5.1.1.2 Frequency Response
188(1)
5.1.1.3 Polar Plot and Bode Plot Representations
188(1)
5.1.2 Bode Plots for Multiplication Factors
189(1)
5.1.2.1 Constant
189(1)
5.1.2.2 Single and Double Integration Functions
189(2)
5.1.2.3 Single and Double Differentiation Functions
191(1)
5.1.2.4 Single Pole and Single Zero Functions
192(2)
5.1.2.5 Double Pole and Double Zero Functions
194(2)
5.1.2.6 RHP Pole and RHP Zero Functions
196(2)
5.1.3 Bode Plot Construction for Transfer Functions
198(1)
5.1.3.1 Examples of Bode Plot Construction
198(3)
5.1.3.2 Non-minimum Phase System
201(1)
5.1.4 Identification of Transfer Function from Bode Plot
202(1)
5.2 Power Stage Transfer Functions of Three Basic Converters in CCM Operation
203(17)
5.2.1 Power Stage Transfer Functions of Buck Converter
203(1)
5.2.1.1 Input-to-Output Transfer Function
203(4)
5.2.1.2 Duty Ratio-to-Output Transfer Function
207(2)
5.2.1.3 Load Current-to-Output Transfer Function
209(1)
5.2.2 Power Stage Transfer Functions of Boost Converter
210(1)
5.2.2.1 Input-to-Output Transfer Function
210(1)
5.2.2.2 Duty Ratio-to-Output Transfer Function and RHP Zero
211(4)
5.2.2.3 Load Current-to-Output Transfer Function
215(1)
5.2.2 A Functional Origin of RHP Zero
216(2)
5.2.3 Power Stage Transfer Functions of Buck/Boost Converter
218(2)
5.3 Power Stage Transfer Functions in DCM Operation
220(5)
5.3.1 Evaluation of DCM Transfer Functions
220(2)
5.3.2 Analysis of DCM Duty Ratio-to-Output Transfer Function
222(3)
5.4 Power Stage Transfer Functions of Isolated Converters
225(4)
5.4.1 Tertiary-Winding Reset Forward Converter
225(2)
5.4.2 Flyback Converter
227(2)
5.5 Empirical Methods for Small-Signal Analysis
229(2)
5.6
Chapter Summary
231(10)
Reference
232(1)
Problems
233(8)
6 Dynamic Performance of PWM Dc-to-Dc Converters
241(46)
6.1 Stability
241(2)
6.2 Frequency-Domain Performance Criteria
243(4)
6.2.1 Loop Gain
243(2)
6.2.2 Audio-susceptibility
245(1)
6.2.3 Output Impedance
246(1)
6.3 Time-Domain Performance Metrics
247(2)
6.3.1 Step Load Response
247(2)
6.3.2 Step Input Response
249(1)
6.4 Stability of Dc-to-Dc Converters
249(7)
6.4.1 Stability of Linear Time-Invariant Systems
249(1)
6.4.1.1 Definition of BIBO Stability
250(1)
6.4.1.2 Unit Impulse Function and Impulse Response
250(2)
6.4.1.3 Impulse Response and BIBO Stability
252(2)
6.4.1.4 Pole Locations and BIBO Stability
254(1)
6.4.2 Small-Signal Stability of Dc-to-Dc Converters
255(1)
6.5 Nyquist Criterion
256(15)
6.5.1 Theoretical Foundation of Nyquist Criterion
256(1)
6.5.1.1 Contour Mapping from s-plane to F(s)-plane
256(1)
6.5.1.2 Cauchy's Theorem
257(1)
6.5.2 Proof of Cauchy's Theorem
258(3)
6.5.2.1 Proof of Fact I and Fact II
261(1)
6.5.2.2 Cauchy's Theorem to Evaluate RHP Roots in 1 + T(s) = 0
261(4)
6.5.3 Nyquist Stability Criterion
265(1)
6.5.4 Application of Nyquist Stability Criterion to Dc-to-Dc Converters
266(5)
6.6 Relative Stability: Gain Margin and Phase Margin
271(5)
6.7
Chapter Summary
276(11)
Problems
278(9)
Part III Control Schemes and Converter Performance
287(178)
7 Feedback Compensation and Closed-Loop Performance -- Voltage Mode Control
289(68)
7.1 Asymptotic Analysis Method
289(7)
7.1.1 Concept of Asymptotic Analysis Method
290(1)
7.1.2 Examples of Asymptotic Analysis Method
291(5)
7.1.2.1 Procedures for Asymptotic Analysis
296(1)
7.2 Analysis of Frequency-Domain Performance in CCM
296(5)
7.2.1 Audio-Susceptibility Analysis
298(1)
7.2.2 Output Impedance Analysis
299(2)
7.3 Voltage Feedback Compensation and CCM Loop Gain
301(5)
7.3.1 Problems of Single Integration Function
301(2)
7.3.2 Voltage Feedback Compensation
303(3)
7.4 Compensation Design and Closed-Loop Performance in CCM
306(28)
7.4.1 Voltage Feedback Compensation and Loop Gain
306(3)
7.4.2 Feedback Compensation Design Guidelines
309(1)
7.4.3 Voltage Feedback Compensation and Closed-Loop Performance
310(11)
7.4.4 Phase Margin and Closed-Loop Performance
321(4)
7.4.5 Compensation Zeros and Speed of Transient Responses
325(3)
7.4.6 Step Load Response
328(3)
7.4.7 Non-Minimum Phase System Case: Boost and Buck/Boost Converters
331(1)
7.4.7.1 Boost and Buck/Boost Converters
331(3)
7.4.7.2 Alternative Control Scheme: Current Mode Control
334(1)
7.5 Consideration of DCM Operation
334(4)
7.5.1 Review of DCM Converter Dynamics
335(1)
7.5.2 Control Design Strategy and Converter Performance
336(2)
7.6
Chapter Summary
338(19)
Reference
340(1)
Problems
340(17)
8 Current Mode Control
357(108)
8.1 Models of Current Mode Control and
Chapter Outline
357(2)
8.1.1 Modeling Peak Current Mode Control
358(1)
8.1.2
Chapter Outline
358(1)
8.2 Current Mode Control Basics
359(13)
8.2.1 Evolution to Peak Current Mode Control
359(1)
8.2.1.1 Compensation Ramp
359(4)
8.2.1.2 Peak Current Mode Control
363(4)
8.2.2 Benefits and Issues of Peak Current Mode Control
367(1)
8.2.2.1 Benefits of Peak Current Mode Control
367(1)
8.2.2.2 Issues of Peak Current Mode Control
367(1)
8.2.3 Average Current Mode Control and Charge Control
368(1)
8.2.3.1 Average Current Mode Control
368(2)
8.2.3.2 Charge Control
370(2)
8.3 Classical Model for Current Mode Control
372(4)
8.3.1 Classical Small-Signal Model for Peak Current Mode Control
372(3)
8.3.2 Classical Small-Signal Block Diagram of Closed-Loop Controlled PWM Converters
375(1)
8.4 Sampling Effects and New s-Domain Model of Current Mode Control
376(7)
8.4.1 Origin and Consequences of Sampling Effects
377(1)
8.4.1.1 Origin of Sampling Effects
377(1)
8.4.1.2 Consequences of Sampling Effects
378(1)
8.4.2 Modeling Methodology for Sampling Effects
379(1)
8.4.3 Feedforward Gains
380(1)
8.4.4 New s-Domain Model for Current Mode Control
381(1)
8.4.5 Two New s-Domain Models for Current Mode Control
381(2)
8.5 Expressions for New s-Domain Model for Current Mode Control
383(14)
8.5.1 Modified Small-Signal Model
383(1)
8.5.2 Modulator Gain F*m
384(1)
8.5.3 He(s): s-Domain Representation of Sampling Effects
385(1)
8.5.3.1 Step One: Two Different Expressions for Hl(s) = Il(s)/ucon
386(4)
8.5.3.2 Step Two: Identification of Gain Block He(s)
390(1)
8.5.3.3 Step Three: Approximation of Gain Block He(s)
391(2)
8.5.4 Feedforward Gains
393(1)
8.5.4.1 Feedforward Gain k'f
393(3)
8.5.4.2 Feedforward Gain k'r
396(1)
8.5.4.3 Conversion of Feedforward Gains
396(1)
8.6 Control Design for Current Mode Control
397(24)
8.6.1 Composite Power Stage Model
397(2)
8.6.2 Control-to-Output Transfer Function with Current Loop Closed
399(1)
8.6.2.1 Derivation of Gvci(s)
399(3)
8.6.2.2 Predictions of Gvci(s)
402(2)
8.6.3 Control Design Principles
404(1)
8.6.3.1 Voltage Feedback Compensation
404(2)
8.6.3.2 Voltage Feedback Compensation for Buck Converter
406(1)
8.6.3.3 Voltage Feedback Compensation for Boost and Buck/Boost Converters
407(1)
8.6.3.4 Circuit for Two-Pole One-Zero Compensation
408(1)
8.6.3.5 Current Loop Design Strategy
409(1)
8.6.4 Step by Step Control Design Procedures
410(1)
8.6.4.1 Current Loop Design
410(1)
8.6.4.2 Voltage Feedback Compensation Design
410(11)
8.7 Step Load Response Analysis
421(16)
8.7.1 Output Impedance Analysis
423(4)
8.7.2 Step Load Response Analysis
427(5)
8.7.2.1 Step Load Response and Compensation Design
432(4)
8.7.2.2 Generalization of Step Load Response
436(1)
8.8 Off-Line Flyback Converter with Optocoupler-Isolated Current Mode Control
437(15)
8.8.1 Off-Line Power Supplies
438(1)
8.8.2 Current Mode Control for Flyback Converter with Optocoupler-Isolated Feedback
438(1)
8.8.2.1 Optocoupler-Isolated Current Mode Feedback Circuit
439(2)
8.8.2.2 Small-Signal Model
441(1)
8.8.2.3 Optocoupler-Isolated Feedback Circuit
442(3)
8.8.2.4 Control Design Procedures
445(7)
8.9
Chapter Summary
452(13)
References
453(1)
Problems
454(11)
Part IV Dc Power Distribution Systems
465(200)
9 Uncoupled Converter and Extra Element Theorem
467(42)
9.1 Uncoupled Converter
467(3)
9.1.1 Structure of Dc Power Distribution Systems
468(1)
9.1.2 Individual Converters in Dc Power Distribution Systems
469(1)
9.1.3 Uncoupled Converter
469(1)
9.2 Dynamics and Control of Uncoupled Converters
470(11)
9.2.1 Uncoupled Buck Converter
470(1)
9.2.1.1 Power Stage Dynamics
470(2)
9.2.1.2 Control-to-Output Transfer Function with Current Loop Closed
472(1)
9.2.1.3 Control Design
473(3)
9.2.2 Uncoupled Boost Converter
476(1)
9.2.2.1 Power Stage Dynamics
476(2)
9.2.2.2 Control-to-Output Transfer Function with Current Loop Closed
478(1)
9.2.2.3 Compensation Design
478(1)
9.2.3 Uncoupled Buck/Boost Converter
479(2)
9.3 Middlebrook's Extra Element Theorem and Coupled Converters
481(17)
9.3.1 Middlebrook's Extra Element Theorem
482(1)
9.3.1.1 Extra Element Theorem
482(2)
9.3.1.2 Proof of EET
484(1)
9.3.1.3 EET Application Example
485(1)
9.3.1.4 Alternative Form of EET
486(1)
9.3.1.5 Extension of Extra Element Theorem
487(1)
9.3.2 Performance of Load Coupled Converter
488(4)
9.3.3 Performance of Source-Coupled Converter
492(5)
9.3.4 Performance of Source/Load-Coupled Converter
497(1)
9.4 Middlebrook's Feedback Theorem
498(4)
9.4.1 EET for Feedback-Controlled Systems
498(1)
9.4.2 Middlebrook's Feedback Theorem
499(3)
9.5
Chapter Summary
502(7)
References
503(1)
Problems
503(6)
10 Load-Coupled Converters and Loading Effects
509(42)
10.1 Load Impedance -- Input Impedance of Load Subsystem
509(7)
10.1.1 Load Impedance Analysis Using Simplified Circuit Model
510(2)
10.1.2 EET-Based Load Impedance Analysis
512(3)
10.1.2.1 Negative Resistance Representation of ZiC(s)
515(1)
10.2 Stability Analysis of Load-Coupled Converters
516(12)
10.2.1 Absolute Stability
518(6)
10.2.2 Relative Stability
524(4)
10.3 Loop Gain Analysis of Load-Coupled Converters
528(6)
10.3.1 Graphical Analysis and Construction of Loop Gain
528(2)
10.3.1.1 Loop Gain for Case B
530(3)
10.3.2 Section Summary
533(1)
10.4 Other Performance Metrics
534(6)
10.4.1 Output Impedance
534(2)
10.4.2 Audio-Susceptibility
536(1)
10.4.3 Input Impedance
537(3)
10.4.4 Transient Response
540(1)
10.5
Chapter Summary
540(11)
10.5.1 Load Impedance Analysis
540(1)
10.5.2 Stability Analysis
540(1)
10.5.3 Loop Gain Analysis
541(1)
10.5.4 Other Performance Analysis
541(1)
10.5.5 Extension to General Load Subsystems
542(1)
References
542(1)
Problems
542(9)
11 Source-Coupled Converters and Input Filter Interaction
551(40)
11.1 Input Filter-Coupled Converter and Input Filter Interaction
551(7)
11.1.1 Input Filter-Coupled Converter
551(1)
11.1.2 Transfer Functions of Input Filter-Coupled Converter
552(2)
11.1.3 Condition for Stability
554(2)
11.1.4 Conditions for Minimal Input Filter Interaction
556(2)
11.1.5 Performance Analysis Under Input Filter Interaction
558(1)
11.2 Input Filter Interaction Case One-Boost Converter with Voltage Mode Control
558(12)
11.2.1 Input Impedance Analysis
559(3)
11.2.1.1 Negative Input Resistance of Regulated Converters
562(1)
11.2.2 Stability Analysis
563(2)
11.2.3 Converter Performance Under Input Filter Interaction
565(5)
11.3 Input Filter Interaction Case Two-Boost Converter with Current Mode Control
570(5)
11.3.1 Input Impedance Analysis
571(1)
11.3.2 Converter Performance Metrics
571(3)
11.3.3 Converter Performance Under Input Filter Interaction
574(1)
11.3.4 Conditions for Minimal Input Filter Interaction
575(1)
11.4 Input Filter Interaction Case Three - Buck Converter with Current Mode Control
575(6)
11.4.1 Input Impedance Analysis
576(1)
11.4.2 Converter Performance Under Input Filter Interaction
577(4)
11.5
Chapter Summary
581(10)
11.5.1 Condition for Stability
581(1)
11.5.2 Conditions for Minimal Performance Change
581(2)
11.5.3 Converter Performance Under Input Filter Interaction
583(1)
11.5.3.1 Case A: Voltage-Mode Controlled Three Basic Converters
583(1)
11.5.3.2 Case B: Current-Mode Controlled Boost and Buck/Boost Converters
583(1)
11.5.3.3 Case C: Current-Mode Controlled Buck Converters
583(1)
11.5.4 Extension to Source-Coupled Converters
584(1)
References
584(1)
Problems
584(7)
12 Design of Dc Power Distribution Systems
591(74)
12.1 Introduction to Final
Chapter: Power System Design Approach
591(4)
12.1.1 Standalone Functional Unit
593(1)
12.1.2 Two-Step Approach to System Design
594(1)
12.1.3 Two-Stage Dc Power Distribution System
595(1)
12.2 Line Filter and Source/Load Impedances of Converters
595(16)
12.2.1 Load Impedance of Upstream Converter
595(3)
12.2.2 Source Impedance of Downstream Converter
598(6)
12.2.3 Impedance Overlap and Impedance Gap
604(1)
12.2.3.1 Impedance Gap for Stability and Performance of Downstream Converter
605(1)
12.2.3.2 Impedance Overlap for Performance Programming of Upstream Converter
605(1)
12.2.3.3 Line Filter and Impedance Overlap/Impedance Gap
606(2)
12.2.4 Line Filter Design
608(3)
12.3 Impedance Overlap and Converter Performance
611(12)
12.3.1 Downstream Converter Performance with Impedance Gap
612(1)
12.3.2 Upstream Converter Loop Gain with Impedance Overlap
613(2)
12.3.3 Upstream Converter Input Impedance with Impedance Overlap
615(1)
12.3.3.1 Input Impedance of Upstream Converter with Current Mode Control
616(5)
12.3.3.2 Input Impedance of Upstream Converter with Voltage Mode Control
621(1)
12.3.3.3 Section Summary
621(2)
12.4 Impedance Overlap and Dc Link Dynamics
623(8)
12.4.1 Dc Link Impedance Zlink
623(1)
12.4.1.1 Peaks in Zlink
624(2)
12.4.2 Transient Response of Dc Link Voltage Vlink
626(1)
12.4.2.1 Qualitative Analysis of Vlink
626(2)
12.4.2.2 Simplified Analysis of Vlimk
628(3)
12.5 Design of Multi-Stage Dc Power Distribution Systems
631(6)
12.5.1 Design Approach to Multi-Stage Dc Power Distribution Systems
631(2)
12.5.2 Line Filter Design
633(1)
12.5.2.1 Load Impedance
633(1)
12.5.2.2 Line Filter Design Procedures
634(1)
12.5.3 Illustrative Example
635(2)
12.6 Consideration of Parallel Filter-Converter Modules
637(12)
12.6.1 Design Outline for Parallel-Module Systems
637(2)
12.6.2 Upstream Converter Dynamics in Frequency-Domain
639(1)
12.6.3 Dc Link Dynamics
640(1)
12.6.4 Line Filter Design
641(1)
12.6.5 Illustrative Example
642(1)
12.6.5.1 Dominant Filter-Converter Module
642(1)
12.6.5.2 Line Filter Design Curve: The ω1 -- PM1 Curve
643(1)
12.6.5.3 Creation of Filter Design Curve
644(2)
12.6.5.4 Accuracy of Design Curve
646(1)
12.6.5.5 Performance Evaluation and Experimental Validation
647(2)
12.7 EMI Standards and Line Filter Design
649(4)
12.7.1 Circuit Properties of Line Filters
650(1)
12.7.1.1 Current Filtering and Filter Structure
650(1)
12.7.1.2 Reciprocity and Current Attenuation Function
650(1)
12.7.2 EMI Standards, Current Attenuation, and Line Filter Design
651(2)
12.8 Summary of Final
Chapter
653(12)
References
654(1)
Problems
655(10)
Appendix A Answers to End-of-Chapter Problems 665(18)
Index 683
Byungcho Choi, PhD, is Professor in School of Electronics at Kyungpook National University in Daegu, Korea. He received his doctorate from Virginia Polytechnic Institute and State University in Blacksburg, Virginia. His research focus is on PWM dc-to-dc power conversion and dc power distribution systems.