Muutke küpsiste eelistusi

Python for Finance [Pehme köide]

  • Formaat: Paperback / softback, 606 pages, kõrgus x laius x paksus: 233x181x31 mm, kaal: 1030 g
  • Ilmumisaeg: 20-Jan-2015
  • Kirjastus: O'Reilly Media
  • ISBN-10: 1491945281
  • ISBN-13: 9781491945285
Teised raamatud teemal:
  • Pehme köide
  • Hind: 69,39 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 606 pages, kõrgus x laius x paksus: 233x181x31 mm, kaal: 1030 g
  • Ilmumisaeg: 20-Jan-2015
  • Kirjastus: O'Reilly Media
  • ISBN-10: 1491945281
  • ISBN-13: 9781491945285
Teised raamatud teemal:
The financial industry has adopted Python at a tremendous rate recently, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. This hands-on guide helps both developers and quantitative analysts get started with Python, and guides you through the most important aspects of using Python for quantitative finance. Using practical examples through the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks, with topics that include: Fundamentals: Python data structures, NumPy array handling, time series analysis with pandas, visualization with matplotlib, high performance I/O operations with PyTables, date/time information handling, and selected best practices Financial topics: mathematical techniques with NumPy, SciPy and SymPy such as regression and optimization; stochastics for Monte Carlo simulation, Value-at-Risk, and Credit-Value-at-Risk calculations; statistics for normality tests, mean-variance portfolio optimization, principal component analysis (PCA), and Bayesian regression Special topics: performance Python for financial algorithms, such as vectorization and parallelization, integrating Python with Excel, and building financial applications based on Web technologies
Preface xi
Part I Python and Finance
1 Why Python for Finance?
3(22)
What Is Python?
3(6)
Brief History of Python
5(1)
The Python Ecosystem
6(1)
Python User Spectrum
7(1)
The Scientific Stack
8(1)
Technology in Finance
9(4)
Technology Spending
10(1)
Technology as Enabler
10(1)
Technology and Talent as Barriers to Entry
10(1)
Ever-Increasing Speeds, Frequencies, Data Volumes
11(1)
The Rise of Real-Time Analytics
12(1)
Python for Finance
13(9)
Finance and Python Syntax
14(3)
Efficiency and Productivity Through Python
17(4)
From Prototyping to Production
21(1)
Conclusions
22(1)
Further Reading
23(2)
2 Infrastructure and Tools
25(24)
Python Deployment
26(8)
Anaconda
26(6)
Python Quant Platform
32(2)
Tools
34(13)
Python
34(1)
IPython
35(10)
Spyder
45(2)
Conclusions
47(1)
Further Reading
48(1)
3 Introductory Examples
49(30)
Implied Volatilities
50(9)
Monte Carlo Simulation
59(9)
Pure Python
61(2)
Vectorization with NumPy
63(2)
Full Vectorization with Log Euler Scheme
65(2)
Graphical Analysis
67(1)
Technical Analysis
68(6)
Conclusions
74(1)
Further Reading
75(4)
Part II Financial Analytics and Development
4 Data Types and Structures
79(30)
Basic Data Types
80(6)
Integers
80(1)
Floats
81(3)
Strings
84(2)
Basic Data Structures
86(9)
Tuples
87(1)
Lists
88(1)
Excursion: Control Structures
89(2)
Excursion: Functional Programming
91(1)
Dicts
92(2)
Sets
94(1)
NumPy Data Structures
95(7)
Arrays with Python Lists
96(1)
Regular NumPy Arrays
97(4)
Structured Arrays
101(1)
Vectorization of Code
102(4)
Basic Vectorization
102(3)
Memory Layout
105(1)
Conclusions
106(1)
Further Reading
107(2)
5 Data Visualization
109(28)
Two-Dimensional Plotting
109(19)
One-Dimensional Data Set
110(5)
Two-Dimensional Data Set
115(6)
Other Plot Styles
121(7)
Financial Plots
128(4)
3D Plotting
132(3)
Conclusions
135(1)
Further Reading
135(2)
6 Financial Time Series
137(36)
pandas Basics
138(13)
First Steps with DataFrame Class
138(4)
Second Steps with DataFrame Class
142(4)
Basic Analytics
146(3)
Series Class
149(1)
GroupBy Operations
150(1)
Financial Data
151(6)
Regression Analysis
157(9)
High-Frequency Data
166(4)
Conclusions
170(1)
Further Reading
171(2)
7 Input/Output Operations
173(30)
Basic I/O with Python
174(9)
Writing Objects to Disk
174(3)
Reading and Writing Text Files
177(2)
SQL Databases
179(2)
Writing and Reading NumPy Arrays
181(2)
I/O with pandas
183(7)
SQL Database
184(1)
From SQL to pandas
185(3)
Data as CSV File
188(1)
Data as Excel File
189(1)
Fast I/O with PyTables
190(10)
Working with Tables
190(6)
Working with Compressed Tables
196(1)
Working with Arrays
197(1)
Out-of-Memory Computations
198(2)
Conclusions
200(1)
Further Reading
201(2)
8 Performance Python
203(30)
Python Paradigms and Performance
204(3)
Memory Layout and Performance
207(2)
Parallel Computing
209(6)
The Monte Carlo Algorithm
209(1)
The Sequential Calculation
210(1)
The Parallel Calculation
211(3)
Performance Comparison
214(1)
multiprocessing
215(2)
Dynamic Compiling
217(6)
Introductory Example
217(1)
Binomial Option Pricing
218(5)
Static Compiling with Cython
223(3)
Generation of Random Numbers on GPUs
226(4)
Conclusions
230(1)
Further Reading
231(2)
9 Mathematical Tools
233(32)
Approximation
234(15)
Regression
234(11)
Interpolation
245(4)
Convex Optimization
249(6)
Global Optimization
250(1)
Local Optimization
251(2)
Constrained Optimization
253(2)
Integration
255(3)
Numerical Integration
256(1)
Integration by Simulation
257(1)
Symbolic Computation
258(4)
Basics
258(1)
Equations
259(1)
Integration
260(1)
Differentiation
261(1)
Conclusions
262(1)
Further Reading
263(2)
10 Stochastics
265(42)
Random Numbers
266(5)
Simulation
271(19)
Random Variables
271(3)
Stochastic Processes
274(13)
Variance Reduction
287(3)
Valuation
290(8)
European Options
291(4)
American Options
295(3)
Risk Measures
298(7)
Value-at-Risk
298(4)
Credit Value Adjustments
302(3)
Conclusions
305(1)
Further Reading
305(2)
11 Statistics
307(50)
Normality Tests
308(14)
Benchmark Case
309(8)
Real-World Data
317(5)
Portfolio Optimization
322(13)
The Data
323(1)
The Basic Theory
324(4)
Portfolio Optimizations
328(2)
Efficient Frontier
330(2)
Capital Market Line
332(3)
Principal Component Analysis
335(6)
The DAX Index and Its 30 Stocks
336(1)
Applying PCA
337(1)
Constructing a PCA Index
338(3)
Bayesian Regression
341(14)
Bayes's Formula
341(1)
PyMC3
342(1)
Introductory Example
343(4)
Real Data
347(8)
Conclusions
355(1)
Further Reading
355(2)
12 Excel Integration
357(24)
Basic Spreadsheet Interaction
358(11)
Generating Workbooks (.xls)
359(1)
Generating Workbooks (.xslx)
360(2)
Reading from Workbooks
362(2)
Using OpenPyxl
364(2)
Using pandas for Reading and Writing
366(3)
Scripting Excel with Python
369(10)
Installing DataNitro
369(1)
Working with DataNitro
370(9)
xlwings
379(1)
Conclusions
379(1)
Further Reading
380(1)
13 Object Orientation and Graphical User Interfaces
381(22)
Object Orientation
381(12)
Basics of Python Classes
382(5)
Simple Short Rate Class
387(4)
Cash Flow Series Class
391(2)
Graphical User Interfaces
393(8)
Short Rate Class with GUI
394(2)
Updating of Values
396(2)
Cash Flow Series Class with GUI
398(3)
Conclusions
401(1)
Further Reading
401(2)
14 Web Integration
403(52)
Web Basics
404(7)
ftplib
405(2)
httplib
407(1)
urllib
408(3)
Web Plotting
411(13)
Static Plots
411(3)
Interactive Plots
414(3)
Real-Time Plots
417(7)
Rapid Web Applications
424(18)
Traders' Chat Room
426(1)
Data Modeling
426(1)
The Python Code
427(7)
Templating
434(6)
Styling
440(2)
Web Services
442(9)
The Financial Model
443(2)
The Implementation
445(6)
Conclusions
451(1)
Further Reading
452(3)
Part III Derivatives Analytics Library
15 Valuation Framework
455(12)
Fundamental Theorem of Asset Pricing
455(3)
A Simple Example
456(1)
The General Results
457(1)
Risk-Neutral Discounting
458(4)
Modeling and Handling Dates
458(2)
Constant Short Rate
460(2)
Market Environments
462(3)
Conclusions
465(1)
Further Reading
466(1)
16 Simulation of Financial Models
467(22)
Random Number Generation
468(2)
Generic Simulation Class
470(3)
Geometric Brownian Motion
473(5)
The Simulation Class
474(2)
A Use Case
476(2)
Jump Diffusion
478(4)
The Simulation Class
478(3)
A Use Case
481(1)
Square-Root Diffusion
482(4)
The Simulation Class
483(2)
A Use Case
485(1)
Conclusions
486(1)
Further Reading
487(2)
17 Derivatives Valuation
489(22)
Generic Valuation Class
489(4)
European Exercise
493(7)
The Valuation Class
494(2)
A Use Case
496(4)
American Exercise
500(7)
Least-Squares Monte Carlo
501(1)
The Valuation Class
502(2)
A Use Case
504(3)
Conclusions
507(2)
Further Reading
509(2)
18 Portfolio Valuation
511(18)
Derivatives Positions
512(3)
The Class
512(2)
A Use Case
514(1)
Derivatives Portfolios
515(10)
The Class
516(4)
A Use Case
520(5)
Conclusions
525(2)
Further Reading
527(2)
19 Volatility Options
529(18)
The VSTOXX Data
530(4)
VSTOXX Index Data
530(1)
VSTOXX Futures Data
531(2)
VSTOXX Options Data
533(1)
Model Calibration
534(8)
Relevant Market Data
535(1)
Option Modeling
536(2)
Calibration Procedure
538(4)
American Options on the VSTOXX
542(3)
Modeling Option Positions
543(1)
The Options Portfolio
544(1)
Conclusions
545(1)
Further Reading
546(1)
A Selected Best Practices 547(10)
B Call Option Class 557(6)
C Oates and Times 563(12)
Index 575
Yves Hilpisch has 10 years of experience with Python, particularly in the finance space. He founded Visixion - an independent, privately-owned analytics software provider and financial engineering boutique. He works as Managing Director Europe for Continuum Analytics, and lectures on Mathematical Finance at Saarland University in Germany.