Muutke küpsiste eelistusi

Quantitative Data Analysis with SPSS for Windows: A Guide for Social Scientists [Kõva köide]

  • Formaat: Hardback, 336 pages, kõrgus x laius: 234x156 mm, kaal: 453 g
  • Ilmumisaeg: 02-Jan-1997
  • Kirjastus: Routledge
  • ISBN-10: 0415147190
  • ISBN-13: 9780415147194
  • Kõva köide
  • Hind: 100,44 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 336 pages, kõrgus x laius: 234x156 mm, kaal: 453 g
  • Ilmumisaeg: 02-Jan-1997
  • Kirjastus: Routledge
  • ISBN-10: 0415147190
  • ISBN-13: 9780415147194
Quantitative Data Analysis with SPSS for Windows explains statistical tests using the latest version of SPSS, the most widely used computer package for analysing quantitative data. Using the same formula-free, non-technical approach as the highly successful non-windows version, it assumes no previous familiarity with either statistics or computing, and takes the reader step-by-step through each of the techniques for which SPSS for Windows can be used, including:
correlation
simple and multiple regression
multivariate analysis of variance and covariance
factor analysis
The book also contains a comprehensive range of exercises with answers, and covers issues such as sampling, statistical significance, and the selection of appropriate tests.

Arvustused

The book is clear, succinct and accessible. A very useful text for beginners. - Josephine Hutt, University of Staffordshire

List of figures
viii(2)
List of boxes x(3)
List of tables
xiii(4)
Preface xvii
1 Data analysis and the research process
1(15)
2 Analyzing data with computers: first steps with SPSS for Windows
16(26)
3 Analyzing data with computers: further steps with SPSS for Windows
42(11)
4 Concepts and their measurement
53(16)
5 Summarizing data
69(29)
6 Sampling and statistical significance
98(16)
7 Bivariate analysis: exploring differences between two variables
114(46)
8 Bivariate analysis: exploring relationships between two variables
160(43)
9 Multivariate analysis: exploring differences among three or more variables
203(34)
10 Multivariate analysis: exploring relationships among three or more variables
237(39)
11 Aggregating variables: exploratory factor analysis
276(16)
Answers to exercises 292(12)
Bibliography 304(3)
Index 307