Muutke küpsiste eelistusi

Quantitative Thin-Layer Chromatography: A Practical Survey [Kõva köide]

  • Formaat: Hardback, 388 pages, kõrgus x laius: 235x155 mm, kaal: 844 g, XV, 388 p., 1 Hardback
  • Ilmumisaeg: 05-Jan-2011
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642107273
  • ISBN-13: 9783642107276
Teised raamatud teemal:
  • Kõva köide
  • Hind: 187,67 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 220,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 388 pages, kõrgus x laius: 235x155 mm, kaal: 844 g, XV, 388 p., 1 Hardback
  • Ilmumisaeg: 05-Jan-2011
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642107273
  • ISBN-13: 9783642107276
Teised raamatud teemal:
Focusing on quantitative analytics, Quantitative Thin-Layer Chromatography presents the analytical procedure step-by-step. Topics include sample pretreatment and sample application, development and staining, data presentation and validation.

Thin-layer chromatography (TLC) is widely used particularly for pharmaceutical and food analysis. While there are a number of books on the qualitative identification of chemical substances by TLC, the unique focus here is on quantitative analysis. The authors describe all steps of the analytical procedure, beginning with the basics and equipment for quantitative TLC followed by sample pretreatment and sample application, development and staining, scanning, and finally statistical and chemometric data evaluation and validation. An important feature is the coverage of effect-directed biological detection methods. Chapters are organized in a modular fashion facilitating the easy location of information about individual procedural steps.

Arvustused

From the reviews:

An up-to-date book that reminds chromatographers and analytical chemists of the quantitative possibilities of the techniques is therefore to be welcomed. this is a readable, well-produced and nicely illustrated volume and a moderately useful index of approximately 14 pages. highly recommended to anyone wishing to reacquaint themselves with a once-familiar technique that they have lost touch with. to get up to date with the potential offered by twenty-first century instrumental TLC, this is book provides a good place to start. (Ian D. Wilson, Chromatographia, Vol. 73, 2011)

1 History of Planar Chromatography
1(12)
1.1 History of Paper Chromatography (PC)
1(6)
1.2 History of Thin-Layer Chromatography
7(1)
1.3 The History of Quantitative Planar Chromatography
8(2)
References
10(3)
2 Theoretical Basis of Thin Layer Chromatography (TLC)
13(40)
2.1 Planar and Column Chromatography
13(2)
2.2 TLC Capillary Flow
15(3)
2.3 TLC Distribution Equilibrium
18(4)
2.3.1 Adsorption Chromatography
18(2)
2.3.2 Partition Chromatography
20(2)
2.4 The Retardation Factor (Rf)
22(3)
2.4.1 The Empirical Rf Factor
22(2)
2.4.2 The Thermodynamic Rtf Factor
24(1)
2.5 Mobile Phase Composition
25(2)
2.6 Transfer of TLC Separations to Columns
27(1)
2.7 The Rm Value
28(1)
2.8 Temperature Dependence of TLC Separations
29(1)
2.9 Advanced Theoretical Considerations
30(7)
2.10 Indices Characterizing Separation and Resolution
37(3)
2.11 Zone Broadening in Planar Chromatography
40(5)
2.11.1 The A term
40(1)
2.11.2 The B term
41(1)
2.11.3 The C term
42(1)
2.11.4 Local Plate Height H
42(1)
2.11.5 The van Deemter Equation
43(2)
2.12 Optimum Separation Conditions in TLC
45(2)
2.13 Separation Number
47(3)
2.14 Real Plate Height
50(1)
References
51(2)
3 The Stationary Phase in Thin-Layer Chromatography
53(28)
3.1 Activating and Deactivating Stationary Phases
54(1)
3.2 Snyder's Adsorption Model
55(2)
3.3 Layer Characteristics
57(5)
3.3.1 Layer Thickness (df)
59(1)
3.3.2 Average Particle Size (dp)
60(1)
3.3.3 Particle Size Distribution
60(1)
3.3.4 Specific Surface Area (Os)
60(1)
3.3.5 Pore Volume (Vp)
61(1)
3.3.6 Average Pore diameter (Pd)
61(1)
3.4 The Most Important Stationary Phases in TLC
62(12)
3.4.1 Aluminium Oxide
62(1)
3.4.2 Magnesium Silicate
62(1)
3.4.3 Silica Gel
63(3)
3.4.4 Chemically Bonded Silica Gel Layers
66(1)
3.4.5 Kieselguhr
67(1)
3.4.6 Cellulose
68(2)
3.4.7 Polyamides
70(1)
3.4.8 Ion Exchange Resins
71(1)
3.4.9 Chiral Phases
72(1)
3.4.10 Layers with Fluorescent Indicators
73(1)
3.4.11 Making Your Own Plates
73(1)
3.5 Light Absorption on Plate Surfaces
74(3)
References
77(4)
4 The Mobile Phase in Adsorption and Partition Chromatography
81(24)
4.1 Solvent Characteristics
81(2)
4.2 Solvent Theory for Adsorption Chromatography (According to Snyder)
83(5)
4.2.1 Solvent Strength (εo)
85(1)
4.2.2 Solvent Strength of Binary Mixtures
86(2)
4.3 Solvent Theory in Partition Chromatography
88(5)
4.3.1 Solvent Theory (According to Snyder)
89(3)
4.3.2 Other Methods for Characterizing Solvents
92(1)
4.4 Optimizing Solvent Composition
93(4)
4.5 The PRISMA Model (According to Nyiredy)
97(2)
4.6 Solvent Additives
99(3)
4.7 Appendix: Solvent Properties
102(1)
References
103(2)
5 Preparing and Applying Samples
105(14)
5.1 Sample Preparation
105(3)
5.1.1 The QuEChERS Approach
105(1)
5.1.2 Solid-Phase Extraction
106(2)
5.1.3 Stir Bar Sorptive Extraction
108(1)
5.2 The Dosage Quality
108(4)
5.3 Choice of Application Position
112(1)
5.4 Practical Application Methods
113(4)
5.4.1 Sample Application via Plate Contact
113(1)
5.4.2 Sample Application Without Plate Contact
114(1)
5.4.3 Sample Application via Contact Spotting
114(2)
5.4.4 Plate Overloading and Incomplete Drying
116(1)
References
117(2)
6 Basis for TLC Development Techniques
119(36)
6.1 Influence of the Vapour Phase
119(4)
6.2 Chamber Types for Linear Development
123(3)
6.2.1 N-Chambers ("Trough Chambers")
123(1)
6.2.2 S-Chamber ("Small Chamber")
124(1)
6.2.3 Vario-KS-Chamber
125(1)
6.2.4 The H-Chamber ("Horizontal Chamber")
125(1)
6.3 Controlling Separations via the Vapour Phase
126(7)
6.3.1 Solvent Composition During Separation
126(4)
6.3.2 Plate Pre-loading via the Vapour Phase
130(3)
6.4 Circular Separations
133(1)
6.5 Solvent Gradients
134(11)
6.5.1 Theory of Solvent Gradients
134(6)
6.5.2 Evaporation-Controlled Gradient Elution
140(2)
6.5.3 Multiple Development in TLC
142(1)
6.5.4 Automated Multiple Development (AMD)
143(2)
6.6 Normal Phase Separations with Water-Containing Solvents
145(2)
6.7 Plate Development with Forced Flow
147(1)
6.7.1 Rotation Planar Chromatography (RPC)
147(1)
6.7.2 Over-pressure Layer Chromatography (OPLC)
147(1)
6.8 Two Dimensional TLC (2D TLC)
148(5)
6.8.1 Development in Orthogonal Directions
148(1)
6.8.2 Grafted TLC
149(2)
6.8.3 Stability Test and SRS Technique
151(2)
6.9 Drying the Plate
153(1)
References
153(2)
7 Specific Staining Reactions
155(46)
7.1 Chemical Reactions Prior to Separation (Pre-chromatographic Derivatization)
157(11)
7.1.1 Sample Enrichment by Pre-chromatographic Derivatization
157(2)
7.1.2 Pre-chromatographic In Situ Derivatization
159(4)
7.1.3 Pre-chromatographic Staining
163(4)
7.1.4 Reagents in the Mobile Phase
167(1)
7.2 Post-chromatographic Reactions (Derivatization After Development)
168(23)
7.2.1 Fluorescence Enhancer
170(1)
7.2.2 pH and Redox Indicators
171(1)
7.2.3 Universal Reagents (Charring Reagents)
172(1)
7.2.4 Aldehyde Reagents
173(3)
7.2.5 CH- and NH-Reacting Reagents
176(4)
7.2.6 Boron-Containing Reagents
180(2)
7.2.7 Alkaline Reagents
182(1)
7.2.8 Chloramine-T Reagent
183(1)
7.2.9 Diazotization Reactions
184(1)
7.2.10 Iodine-Starch and Wursters Reagents
185(2)
7.2.11 Reactions with Metal Reagents
187(3)
7.2.12 Reagents for Metal Cations
190(1)
7.3 Reactions via the Gas Phase
191(3)
7.3.1 Ammonium Bicarbonate Reagent
192(1)
7.3.2 Tin(IV) Chloride Reagent
192(1)
7.3.3 Formic Acid Reagent
193(1)
7.3.4 Hydrogen Chloride Reagent
193(1)
7.3.5 Trichloroacetic Acid Reagent
193(1)
7.3.6 Nitric Acid Reagent
194(1)
7.4 Thermal Treatment of TLC Plates
194(1)
7.5 Activity Analysis Using Chemical Reagents
194(3)
7.5.1 Folin-Ciocalteu Reagent
195(1)
7.5.2 Checking for Free Radical Scavenger Activity Using DPPH Reagent
195(1)
7.5.3 Nucleophilic Reaction Ability
196(1)
References
197(4)
8 Bioeffective-Linked Analysis in Modern HPTLC
201(30)
8.1 Principle of the Method
202(3)
8.1.1 Contaminant Analysis in the Environment and Food and the Principle of Bioactivity-Based Analysis
202(1)
8.1.2 Aims and Fundamental Aspects of Bioeffective-Linked Analysis by Thin-Layer Chromatography
203(1)
8.1.3 HPTLC as a Method for Bioeffective-Linked Analysis
203(2)
8.2 General Rules for the Analysis of Bioeffective Compounds
205(1)
8.3 Enzyme Tests
206(10)
8.3.1 Urease-Inhibition Test for Heavy Metals
206(1)
8.3.2 Analysis Using Redox Enzymes
207(1)
8.3.3 The Detection of Cholinesterase Inhibitors
208(8)
8.4 Inhibition of Photosynthesis by Herbicides
216(2)
8.4.1 Reagent Preparation
216(1)
8.4.2 Hill Reaction
217(1)
8.4.3 Detection Using Algae
217(1)
8.5 Detecting Bioeffective Compounds with Photobacteria
218(4)
8.5.1 Practical Use of Photobacteria
218(2)
8.5.2 Reaction Time Optimization
220(1)
8.5.3 Applications of Photobacteria
221(1)
8.6 Detection of Fungicidal- and Antibiotical-Active Substances in Environmental Samples
222(3)
8.6.1 Determining Fungicides
222(1)
8.6.2 Screening of Pesticides in Food and Surface Water
222(1)
8.6.3 Detection of Compounds by Antibiotic Activity
223(2)
8.7 Yeast Estrogen Screen
225(2)
References
227(4)
9 Planar Chromatography Detectors
231(30)
9.1 Transmittance Measurements in Thin-Layer Chromatography
231(2)
9.1.1 The Lambert-Beer Law
232(1)
9.2 Reflectance Measurements in TLC and HPTLC
233(14)
9.2.1 The Kubelka-Munk Equation
234(3)
9.2.2 Reflectance Measurements with a Diode-Array Scanner
237(2)
9.2.3 Spatial Resolution on the Plate
239(1)
9.2.4 Spectral Distribution on HPTLC Plates
240(2)
9.2.5 Spectral Evaluation Algorithm
242(3)
9.2.6 Video-Densitometric Measurements
245(2)
9.3 Infrared and Raman Detection in Thin-Layer Chromatography
247(3)
9.3.1 Analysis of Thin-Layer Chromatograms by Diffuse Reflectance Infrared Fourier Transformation
247(1)
9.3.2 Analysis of Thin-Layer Chromatograms by Near-Infrared FT-Raman Spectroscopy
248(1)
9.3.3 Analysis of Thin-Layer Chromatograms by Surface-Enhanced Raman Scattering Spectrometry
249(1)
9.4 Mass Spectrometric Detection in TLC
250(4)
9.4.1 Direct Plate Extraction (SSSP)
250(2)
9.4.2 MALDI Techniques (MALDI-MS)
252(1)
9.4.3 Atmospheric Pressure Mass Spectrometry
252(2)
9.5 Thin-Layer Radiochromatography (TL-RC)
254(3)
9.5.1 Direct Radioactivity Measurements on TLC Plates
254(1)
9.5.2 Phosphor Imaging
255(2)
References
257(4)
10 Diffuse Reflectance from TLC Layers
261(16)
10.1 The Lambert Cosine Law
261(2)
10.2 Theory of Diffuse Reflectance
263(7)
10.2.1 Special Case a: The Reversal Reflectance Formula
267(1)
10.2.2 Special Case b: The Fluorescence Formula
267(1)
10.2.3 Special Case c: The Kubelka-Munk Expression
268(2)
10.3 Mass-Dependent Reflection
270(4)
10.4 Simplifying the Expression
274(1)
References
274(3)
11 Fluorescence in TLC Layers
277(12)
11.1 Theory of Fluorescence and Phosphorescence
277(3)
11.2 Fluorescence Enhancement
280(2)
11.3 Quantification in TLC by Fluorescence
282(3)
11.3.1 Low Sample Concentration Fluorescence in Light Scattering Media
283(1)
11.3.2 High Sample Concentration Fluorescence in Light Scattering Media
284(1)
11.4 Contour Plots for Fluorescence Evaluation
285(1)
11.5 TLC Plates Containing a Fluorescent Dye
285(3)
References
288(1)
12 Chemometrics in HPTLC
289(26)
12.1 Calculation of RF Values
289(2)
12.2 Compound Identification Using UV-Visible and Fluorescence Spectra
291(2)
12.3 Correlation Spectroscopy
293(5)
12.3.1 Theory of Correlation Spectroscopy
293(3)
12.3.2 Combination of RF and UV-Visible Spectral Library Search
296(1)
12.3.3 Zone Purity Check
296(2)
12.4 Selection of the Measurement Wavelength
298(3)
12.5 Statistical Photometric Error (Detector Variance)
301(4)
12.5.1 Reciprocal Model
301(1)
12.5.2 Absorbance Model
302(1)
12.5.3 Kubelka-Munk Model
303(1)
12.5.4 Fluorescence model
304(1)
12.5.5 Minimizing the Statistical Photometric Error
305(1)
12.6 Diode Bundling and Data Smoothing
305(2)
12.7 Signal Integration: Area or Height Evaluation?
307(1)
12.8 Deconvolution of Overlapping Peaks
308(2)
12.9 New Visualization Methods for Plots
310(3)
References
313(2)
13 Statistics for Quantitative TLC
315(38)
13.1 The Mean Value
315(1)
13.2 Variance and Precision
316(4)
13.2.1 Definition of Variance
316(2)
13.2.2 Relative Variance
318(1)
13.2.3 Quantification of Relative Variance
319(1)
13.3 Trueness, Precision, and Accuracy
320(1)
13.4 The Gauss Distribution
321(4)
13.4.1 Area of the Gauss Distribution
322(1)
13.4.2 Quantiles of the Gauss Distribution
322(2)
13.4.3 Test for a Normal Distribution
324(1)
13.5 Student's Distribution (t Distribution)
325(1)
13.6 Error Propagation
326(2)
13.7 Calibration Methods
328(6)
13.7.1 The Linear Calibration Function
329(1)
13.7.2 Estimating Xc
330(1)
13.7.3 Estimating a and Yc
331(2)
13.7.4 Estimating the variances of a and Yc
333(1)
13.8 The F-Test
334(1)
13.9 The Linear Regression Variance
334(1)
13.10 The Analytical Function of Linear Regression
335(3)
13.11 Quantitative Analysis Using External Standards
338(1)
13.12 Second-Order Calibration Function
339(4)
13.13 Analytical Function of the Second-Order Calibration
343(2)
13.14 Risk of Systematic Error
345(1)
13.14.1 Constant Systematic Error
345(1)
13.14.2 Proportional Systematic Error
345(1)
13.15 Use of Internal Standards
346(1)
13.16 Standard Addition Method
347(3)
13.17 Mean t Test
350(1)
References
351(2)
14 Planning an Analysis and Validation in TLC
353(22)
14.1 Terms Used in Validation
353(1)
14.2 Method Validation
354(18)
14.2.1 Testing Specificity
354(3)
14.2.2 Quantifying Analytes
357(1)
14.2.3 General Aspects of Calibration
358(1)
14.2.4 Linearity and Working Range
359(1)
14.2.5 Choosing a Calibration Function
360(2)
14.2.6 External Standard Calculation
362(1)
14.2.7 Optimized Calibration Methods
362(1)
14.2.8 Precision
363(1)
14.2.9 Accuracy
364(3)
14.2.10 Confidence Interval
367(1)
14.2.11 Limit of Detection and Limit of Quantification
367(3)
14.2.12 Robustness
370(2)
14.3 Control Charts as Quality Indicators in Routine Analysis
372(1)
References
373(2)
Index 375