Muutke küpsiste eelistusi

Quantum Electrodynamics of Strong Fields: With an Introduction into Modern Relativistic Quantum Mechanics [Kõva köide]

  • Formaat: Hardback, 608 pages, kaal: 1010 g, biography
  • Sari: Theoretical and Mathematical Physics
  • Ilmumisaeg: 01-Oct-1985
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540134042
  • ISBN-13: 9783540134046
  • Kõva köide
  • Hind: 76,45 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 89,95 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 608 pages, kaal: 1010 g, biography
  • Sari: Theoretical and Mathematical Physics
  • Ilmumisaeg: 01-Oct-1985
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540134042
  • ISBN-13: 9783540134046
The fundamental goal of physics is an understanding of the forces of nature in their simplest and most general terms. Yet there is much more involved than just a basic set of equations which eventually has to be solved when applied to specific problems. We have learned in recent years that the structure of the ground state of field theories (with which we are generally concerned) plays an equally funda­ mental role as the equations of motion themselves. Heisenberg was probably the first to recognize that the ground state, the vacuum, could acquire certain prop­ erties (quantum numbers) when he devised a theory of ferromagnetism. Since then, many more such examples are known in solid state physics, e. g. supercon­ ductivity, superfluidity, in fact all problems concerned with phase transitions of many-body systems, which are often summarized under the name synergetics. Inspired by the experimental observation that also fundamental symmetries, such as parity or chiral symmetry, may be violated in nature, it has become wide­ ly accepted that the same field theory may be based on different vacua. Practical­ ly all these different field phases have the status of more or less hypothetical models, not (yet) directly accessible to experiments. There is one magnificent ex­ ception and this is the change of the ground state (vacuum) of the electron-posi­ tron field in superstrong electric fields.
1. Introduction.- 1.1 The Charged Vacuum.- 1.2 From Theory to
Experimental Verification.- 1.2.1 Superheavy Quasimolecules.- 1.2.2 Nuclear
Sticking.- 1.2.3 K-Shell Ionization.- 1.3 Theoretical Developments.- 1.4
Historical Annotations on the Vacuum.- 1.4.1 The Concept of Vacuum.- 1.4.2
The Vacuum in Strong Fields.- 1.5 The Vacuum in Modern Quantum Physics.-
1.5.1 Pion Condensation.- 1.5.2 Strong Gravitational Fields.- 1.5.3 Vacuum
Structure of Strongly Interacting Fermions and Bosons.- Bibliographical
Notes.-
2. The Wave Equation for Spin-1/2 Particles.- 2.1 The Dirac
Equation.- 2.2 The Free Dirac Particle.- 2.3 Single-Particle Interpretation
of Plane (Free) Dirac Waves.- 2.4 The Dirac Particle Coupled to
Electromagnetic Fields - Non-Relativistic Limits and Spin of the Dirac
Equation.- 2.5 Lorentz Covariance of the Dirac Equation.- 2.5.1 Formulation
of Covariance (Form Invariance).- 2.5.2 Determining the ?(a) Operator for
Infinitesimal Lorentz Transformations.- 2.5.3 The ?(a) Operator for Finite
Lorentz Transformations.- 2.5.4 Finite, Proper Lorentz Transformations.-
2.5.5 The ? Operator for Finite Lorentz Transformations.- 2.5.6 The
Four-Current Density.- 2.6 Spinor Under Space Inversion (Parity
Transformation).- 2.7 Bilinear Covariants of Dirac Spinors.- 2.8 Gauge
Invariant Coupling of Electromagnetic and Spinor Field.- Bibliographical
Notes.-
3. Dirac Particles in External Potentials.- 3.1 A Dirac Particle in a
One-Dimensional Square Well Potential.- 3.2 A Dirac Particle in a Scalar,
One-Dimensional Square Well Potential.- 3.3 A Dirac Particle in a Spherical
Well.- 3.4 Solutions of the Dirac Equation for a Coulomb and a Scalar 1/r
Potential.- 3.4.1 Pure Scalar Potential.- 3.4.2 Pure Coulomb Potential.-
3.4.3 Coulomb and Scalar Potential of Equal Strength (?? = ??).- 3.5
Stationary Continuum Waves for a Dirac Particle in a Coulomb Potential.-
Bibliographical Notes.-
4. The Hole Theory.- 4.1 The "Dirac Sea".- 4.1.1
Historical Context.- 4.2 Charge Conjugation Symmetry.- 4.3 Charge Conjugation
of States in External Potential.- 4.3.1 Historical Note.- 4.4 Parity and
Time-Reversal Symmetry.- 4.4.1 Parity Invariance.- 4.4.2 Time-Reversal
Symmetry.- Bibliographical Notes.-
5. The Klein Paradox.- 5.1 The Klein
Paradox in the Single-Particle Interpretation of the Dirac Equation.- 5.2
Klein's Paradox and Hole Theory.- Bibliographical Notes.-
6. Resonant States
in Supercritical Fields.- 6.1 Resonances in the Negative Energy Continuum.-
6.2 One Bound State Diving into One Continuum.- 6.2.1 Filled K Shell.- 6.2.2
Empty K Shell.- 6.3 Two and More Bound States Imbedded in One Continuum.- 6.4
One Bound State Imbedded in Several Continua.- 6.5 Overcritical Continuum
States.- 6.5.1 Continuum Solutions for Extended Nuclei.- 6.5.2 Comments on
the Point Nucleus Problem for Z? > |?|.- 6.5.3 The Physical Phase Shifts.-
6.5.4 Resonances in the Lower Continuum for Z > Zcr.- 6.5.5 The Vacuum Charge
Distribution.- 6.6 Some Useful Mathematical Relations.- 6.6.1 A Different
Choice of Phases.- Bibliographical Notes.-
7. Quantum Electrodynamics of Weak
Fields.- 7.1 The Non-Relativistic Propagator.- 7.2 The S Matrix.- 7.3
Propagator for Electrons and Positrons.- 7.4 Relativistic Scattering Theory.-
Bibliographical Notes.-
8. The Classical Dirac Field Interacting with a
Classical Electromagnetic Field - Formal Properties.- 8.1 Field Equations in
Hamiltonian Form.- 8.2 Conservation Laws.- 8.3 Representation by Energy
Eigenmodes.- 8.3.1 Time-Independent Potentials.- 8.3.2 Explicitly
Time-Dependent Potentials.- 8.4 The Elementary Field Functions.-
Bibliographical Notes.-
9. Second Quantization of the Dirac Field and
Definition of the Vacuum.- 9.1 Canonical Quantization of the Dirac Field.-
9.2 Fock Space and the Vacuum State (I).- 9.3 Poincare Invariance of the
Quantum Theory.- 9.4 Gauge Invariance and Discrete Symmetries.- 9.5 The
Vacuum State (II).- 9.6 The Feynman Propagator.- 9.7 Charge and Energy of the
Vacuum (I).- 9.8 Charge and Energy of the Vacuum (II).- 9.9 Appendix: Feynman
Propagator for Time-Dependent Fields.- Bibliographical Notes.-
10. Evolution
of the Vacuum State in Supercritical Potentials.- 10.1 The In/Out Formalism.-
10.2 Evolution of the Vacuum State.- 10.3 Decay of a Supercritical K Vacancy
- Projection Formalism.- 10.4 Decay of the Neutral Vacuum - Schrodinger
Picture.- 10.5 The Vacuum in a Constant Electromagnetic Field.- 10.6 Quantum
Electrodynamics in Strong Macroscopic Fields.- 10.7 Klein's Paradox
Revisited.- Bibliographical Notes.-
11. Superheavy Quasimolecules.- 11.1
Heavy-Ion Collisions: General Remarks.- 11.2 The Two-Centre Dirac Equation.-
11.3 The Critical Distance Rcr.- Bibliographical Notes.-
12. The Dynamics of
Heavy-Ion Collisions.- 12.1 Rutherford Scattering.- 12.2 Expansion in the
Quasi-Molecular Basis.- 12.3 Heavy-Ion Collisions: A Quantal Description.-
12.4 The Semiclassical Approximation.- 12.5 Collisions with Nuclear
Interaction.- 12.6 Status of Numerical Calculations.- Bibliographical Notes.-
13. Experimental Test of Supercritical Fields in Heavy-Ion Collisions.- 13.1
Establishing Superheavy Quasimolecules.- 13.2 Positron Spectrometers.- 13.2.1
The "Orange"-Type ? Spectrometer.- 13.2.2 Solenoidal Transport Systems.- 13.3
Background Effects Creating Positrons.- 13.4 Positron Experiments I: Gross
Features.- 13.5 Positron Experiments II: Deep Inelastic Collisions.- 13.6
Positron Experiments III: Narrow Structures in the Positron Spectrum.- 13.7
Giant Nuclear Systems and Spontaneous Positron Emission.- Bibliographical
Notes.-
14. Vacuum Polarization.- 14.1 Vacuum-Current Density: Perturbative
Expansion.- 14.2 Gauge Invariance and Vacuum Polarization.- 14.3 Charge
Renormalization.- 14.4 Explicit Form of the Polarization Function.- 14.5
Vacuum Polarization Effects in Atoms.- Bibliographical Notes.-
15. Vacuum
Polarization: Arbitrarily Strong External Potentials.- 15.1 Green's Function
for Arbitrarily Strong External Potentials.- 15.2 Vacuum Polarization Charge
Density.- 15.3 Vacuum Polarization in External Fields of Arbitrary
Strengths.- 15.4 Real and Virtual Vacuum Polarization.- Bibliographical
Notes.-
16. Many-Body Effects in QED of Strong Fields.- 16.1 Self-Consistent
Hartree-Fock Equations.- 16.2 Self-Energy Effects in Atoms.- 16.3 Self-Energy
in Superheavy Atoms.- 16.4 Supercharged Vacuum.- 16.5 The Problem of a
Supercritical Point Charge.- 16.5.1 Overcritical Single-Particle States.-
16.5.2 Screening Effects of the Vacuum Charge.- 16.5.3 Influence of Heavier
Leptons.- 16.6 Klein's Paradox Revisited.- Bibliographical Notes.-
17. Bosons
Bound in Strong Potentials.- 17.1 The Klein-Gordon Field.- 17.2 Alternate
Form of the Klein-Gordon Equation.- Bibliographical Notes.-
18. Subcritical
External Potentials.- 18.1 Quantization of the Klein-Gordon Field with
External Fields.- 18.2 (Quasi) Particle Representation of the Operators.-
18.3 The Fock Space and Diagonalization of the Hamiltonian.- 18.4 The Coulomb
Problem for Spin-0 Particles.- Bibliographical Notes.-
19. Overcritical
Potential for Bose Fields.- 19.1 The Critical Potentials.- 19.2 The True
Ground State and Bose Condensation.- 19.3 Solutions of the Condensate
Equations.- Bibliographical Notes.-
20. Strong Yang-Mills Fields.- 20.1
Quantum Chromodynamics.- 20.2 Gluon Condensates in Strong Colour Fields.-
20.3 The "Magnetic" Formal Properties.- 8.1 Field Equations in Hamiltonian
Form.- 8.2 Conservation Laws.- 8.3 Representation by Energy Eigenmodes.-
8.3.1 Time-Independent Potentials.- 8.3.2 Explicitly Time-Dependent
Potentials.- 8.4 The Elementary Field Functions.- Bibliographical Notes.-
9.
Second Quantization of the Dirac Field and Definition of the Vacuum.- 9.1
Canonical Quantization of the Dirac Field.- 9.2 Fock Space and the Vacuum
State (I).- 9.3 Poincare Invariance of the Quantum Theory.- 9.4 Gauge
Invariance and Discrete Symmetries.- 9.5 The Vacuum State (II).- 9.6 The
Feynman Propagator.- 9.7 Charge and Energy of the Vacuum (I).- 9.8 Charge and
Energy of the Vacuum (II).- 9.9 Appendix: Feynman Propagator for
Time-Dependent Fields.- Bibliographical Notes.-
10. Evolution of the Vacuum
State in Supercritical Potentials.- 10.1 The In/Out Formalism.- 10.2
Evolution of the Vacuum State.- 10.3 Decay of a Supercritical K Vacancy -
Projection Formalism.- 10.4 Decay of the Neutral Vacuum - Schrodinger
Picture.- 10.5 The Vacuum in a Constant Electromagnetic Field.- 10.6 Quantum
Electrodynamics in Strong Macroscopic Fields.- 10.7 Klein's Paradox
Revisited.- Bibliographical Notes.-
11. Superheavy Quasimolecules.- 11.1
Heavy-Ion Collisions: General Remarks.- 11.2 The Two-Centre Dirac Equation.-
11.3 The Critical Distance Rcr.- Bibliographical Notes.-
12. The Dynamics of
Heavy-Ion Collisions.- 12.1 Rutherford Scattering.- 12.2 Expansion in the
Quasi-Molecular Basis.- 12.3 Heavy-Ion Collisions: A Quantal Description.-
12.4 The Semiclassical Approximation.- 12.5 Collisions with Nuclear
Interaction.- 12.6 Status of Numerical Calculations.- Bibliographical Notes.-
13. Experimental Test of Supercritical Fields in Heavy-Ion Collisions.- 13.1
Establishing Superheavy Quasimolecules.- 13.2 Positron Spectrometers.- 13.2.1
The "Orange"-Type ? Spectrometer.- 13.2.2 Solenoidal Transport Systems.- 13.3
Background Effects Creating Positrons.- 13.4 Positron Experiments I: Gross
Features.- 13.5 Positron Experiments II: Deep Inelastic Collisions.- 13.6
Positron Experiments III: Narrow Structures in the Positron Spectrum.- 13.7
Giant Nuclear Systems and Spontaneous Positron Emission.- Bibliographical
Notes.-
14. Vacuum Polarization.- 14.1 Vacuum-Current Density: Perturbative
Expansion.- 14.2 Gauge Invariance and Vacuum Polarization.- 14.3 Charge
Renormalization.- 14.4 Explicit Form of the Polarization Function.- 14.5
Vacuum Polarization Effects in Atoms.- Bibliographical Notes.-
15. Vacuum
Polarization: Arbitrarily Strong External Potentials.- 15.1 Green's Function
for Arbitrarily Strong External Potentials.- 15.2 Vacuum Polarization Charge
Density.- 15.3 Vacuum Polarization in External Fields of Arbitrary
Strengths.- 15.4 Real and Virtual Vacuum Polarization.- Bibliographical
Notes.-
16. Many-Body Effects in QED of Strong Fields.- 16.1 Self-Consistent
Hartree-Fock Equations.- 16.2 Self-Energy Effects in Atoms.- 16.3 Self-Energy
in Superheavy Atoms.- 16.4 Supercharged Vacuum.- 16.5 The Problem of a
Supercritical Point Charge.- 16.5.1 Overcritical Single-Particle States.-
16.5.2 Screening Effects of the Vacuum Charge.- 16.5.3 Influence of Heavier
Leptons.- 16.6 Klein's Paradox Revisited.- Bibliographical Notes.-
17. Bosons
Bound in Strong Potentials.- 17.1 The Klein-Gordon Field.- 17.2 Alternate
Form of the Klein-Gordon Equation.- Bibliographical Notes.-
18. Subcritical
External Potentials.- 18.1 Quantization of the Klein-Gordon Field with
External Fields.- 18.2 (Quasi) Particle Representation of the Operators.-
18.3 The Fock Space and Diagonalization of the Hamiltonian.- 18.4 The Coulomb
Problem for Spin-0 Particles.- Bibliographical Notes.-
19. Overcritical
Potential for Bose Fields.- 19.1 The Critical Potentials.- 19.2 The True
Ground State and Bose Condensation.- 19.3 Solutions of the Condensate
Equations.- Bibliographical Notes.-
20. Strong Yang-Mills Fields.- 20.1
Quantum Chromodynamics.- 20.2 Gluon Condensates in Strong Colour Fields.-
20.3 The "Magnetic" Vacuum of QCD.- 20.4 Spontaneous Quark Pair Production
and Fission of Quark Bags.- Bibliographical Notes.-
21. Strong Fields in
General Relativity.- 21.1 Dirac Particles in a Gravitational Field.- 21.2
Limiting Charge of Black Holes.- 21.3 Uniform Acceleration and Rindler
Space.- 21.4 Event Horizon and Thermal Particle Spectrum.- Bibliographical
Notes.- References.