1 Einstein's Theory of Atom-Radiation Interaction |
|
1 | (12) |
|
1.1 The A and B Coefficients |
|
|
2 | (1) |
|
|
3 | (1) |
|
1.3 Photon Distribution and Fluctuations |
|
|
4 | (1) |
|
1.4 Light Beam Incident on Atoms |
|
|
5 | (1) |
|
1.5 An Elementary Laser Theory |
|
|
6 | (4) |
|
1.5.1 Threshold and Population Inversion |
|
|
7 | (1) |
|
|
8 | (1) |
|
1.5.3 Linear Stability Analysis |
|
|
8 | (2) |
|
|
10 | (1) |
|
|
11 | (2) |
2 Atom-Field Interaction: Semiclassical Approach |
|
13 | (12) |
|
2.1 Broad-Band Radiation Spectrum |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
19 | (2) |
|
2.4 Decay to an Unobserved Level |
|
|
21 | (1) |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
23 | (2) |
3 Quantization of the Electromagnetic Field |
|
25 | (10) |
|
|
29 | (1) |
|
|
30 | (1) |
|
3.3 Commutation Relations |
|
|
31 | (2) |
|
|
33 | (1) |
|
|
34 | (1) |
4 States of the Electromagnetic Field I |
|
35 | (12) |
|
|
36 | (4) |
|
4.1.1 Coherent States Are Minimum Uncertainty States |
|
|
36 | (1) |
|
4.1.2 Coherent States Are Not Orthogonal |
|
|
37 | (1) |
|
4.1.3 Coherent States Are Overcomplete |
|
|
37 | (1) |
|
4.1.4 The Displacement Operator |
|
|
38 | (1) |
|
|
39 | (1) |
|
4.1.6 Coordinate Representation |
|
|
39 | (1) |
|
4.2 Mixed State: Thermal Radiation |
|
|
40 | (5) |
|
|
45 | (1) |
|
|
45 | (2) |
5 States of the Electromagnetic Field II |
|
47 | (14) |
|
5.1 Squeezed States: General Properties and Detection |
|
|
47 | (7) |
|
5.1.1 The Squeeze Operator and the Squeezed State |
|
|
50 | (1) |
|
5.1.2 The Squeezed State Is an Eigenstate of A |
|
|
51 | (1) |
|
5.1.3 Calculation of Moments with Squeezed States |
|
|
51 | (1) |
|
5.1.4 Quadrature Fluctuations |
|
|
52 | (1) |
|
|
53 | (1) |
|
5.2 Multimode Squeezed States |
|
|
54 | (1) |
|
5.3 Detection of Squeezed States |
|
|
55 | (4) |
|
5.3.1 Ordinary Homodyne Detection |
|
|
55 | (2) |
|
5.3.2 Balanced Homodyne Detection |
|
|
57 | (1) |
|
5.3.3 Heterodyne Detection |
|
|
58 | (1) |
|
|
59 | (2) |
6 Quantum Theory of Coherence |
|
61 | (24) |
|
|
63 | (3) |
|
|
66 | (1) |
|
6.3 General Properties of the Correlation Functions |
|
|
67 | (2) |
|
6.4 Young's Interference and First-Order Correlation |
|
|
69 | (3) |
|
6.5 Second-Order Correlations: Photon Bunching and Antibunching |
|
|
72 | (5) |
|
6.5.1 Classical Second-Order Coherence |
|
|
72 | (3) |
|
6.5.2 Quantum Theory of Second-Order Coherence |
|
|
75 | (2) |
|
|
77 | (6) |
|
6.6.1 Some Simple Examples |
|
|
80 | (1) |
|
6.6.2 Quantum Mechanical Photon Count Distribution |
|
|
81 | (1) |
|
6.6.3 Particular Examples |
|
|
82 | (1) |
|
|
83 | (1) |
|
|
83 | (2) |
7 Phase Space Description |
|
85 | (14) |
|
7.1 Q-Representation: Antinormal Ordering |
|
|
85 | (3) |
|
|
86 | (1) |
|
7.1.2 Average of Antinormally Ordered Products |
|
|
86 | (1) |
|
|
86 | (1) |
|
7.1.4 The Density Operator in Terms of the Function Q |
|
|
87 | (1) |
|
7.2 Characteristic Function |
|
|
88 | (1) |
|
7.3 P Representation: Normal Ordering |
|
|
89 | (4) |
|
|
89 | (1) |
|
7.3.2 Averages of Normally Ordered Products |
|
|
90 | (1) |
|
7.3.3 Some Interesting Properties |
|
|
90 | (1) |
|
|
91 | (2) |
|
7.4 The Wigner Distribution: Symmetric Ordering |
|
|
93 | (4) |
|
|
94 | (1) |
|
|
94 | (1) |
|
|
95 | (2) |
|
|
97 | (1) |
|
|
98 | (1) |
8 Atom-Field Interaction |
|
99 | (16) |
|
8.1 Atom-Field Hamiltonian and the Dipole Approximation |
|
|
99 | (3) |
|
8.2 A Two-Level Atom Interacting with a Single Field Mode |
|
|
102 | (2) |
|
8.3 The Dressed State Picture: Quantum Rabi Oscillations |
|
|
104 | (4) |
|
8.4 Collapse and Revivals |
|
|
108 | (4) |
|
|
112 | (1) |
|
|
112 | (3) |
9 System-Reservoir Interactions |
|
115 | (24) |
|
9.1 Quantum Theory of Damping |
|
|
115 | (4) |
|
|
119 | (1) |
|
9.3 Expectation Values of Relevant Physical Quantities |
|
|
119 | (2) |
|
9.4 Time Evolution of the Density Matrix Elements |
|
|
121 | (3) |
|
9.5 The Glauber-Sudarshan Representation, and the Fokker-Planck Equation |
|
|
124 | (1) |
|
9.6 Time-Dependent Solution: The Method of the Eigenfunctions |
|
|
125 | (2) |
|
|
126 | (1) |
|
|
127 | (3) |
|
9.7.1 Calculation of the Correlation Function (F(t')F(t") B |
|
|
129 | (1) |
|
9.7.2 Differential Equation for the Photon Number |
|
|
129 | (1) |
|
9.8 Other Master Equations |
|
|
130 | (7) |
|
9.8.1 Two-Level Atom in a Thermal Bath |
|
|
130 | (1) |
|
9.8.2 Damped Harmonic Oscillator in a Squeezed Bath |
|
|
131 | (3) |
|
9.8.3 Application: Spontaneous Decay in a Squeezed Vaccume |
|
|
134 | (3) |
|
|
137 | (1) |
|
|
137 | (2) |
10 Resonance Fluorescence |
|
139 | (18) |
|
|
139 | (2) |
|
10.2 Heisenberg' s Equations |
|
|
141 | (3) |
|
10.3 Spectral Density, and the Wiener-Khinchine Theorem |
|
|
144 | (3) |
|
10.4 Emission Spectra from Strongly Driven Two-Level Atoms |
|
|
147 | (4) |
|
10.5 Intensity Correlations |
|
|
151 | (4) |
|
|
155 | (1) |
|
|
156 | (1) |
11 Quantum Laser Theory: Master Equation Approach |
|
157 | (26) |
|
11.1 Heuristic Discussion of Injection Statistics |
|
|
158 | (2) |
|
11.2 Master Equation for Generalized Pump Statistics |
|
|
160 | (1) |
|
11.3 The Quantum Theory of the Laser: Random Injection (p = 0) |
|
|
161 | (8) |
|
|
163 | (2) |
|
11.3.2 The Fokker-Planck Equation: Laser Linewidth |
|
|
165 | (1) |
|
11.3.3 Alternative Derivation of the Laser Linewidth |
|
|
166 | (3) |
|
11.4 Quantum Theory of the Micromaser: Random injection (p = 0) |
|
|
169 | (8) |
|
|
169 | (1) |
|
|
170 | (3) |
|
|
173 | (4) |
|
11.5 Quantum Theory of the Laser and the Micromaser with Pump Statistics (p not = to 0) |
|
|
177 | (4) |
|
|
181 | (1) |
|
|
182 | (1) |
12 Quantum Laser Theory: Langevin Approach |
|
183 | (16) |
|
12.1 Quantum Langevin Equations |
|
|
183 | (7) |
|
12.1.1 The Generalized Einstein's Relations |
|
|
185 | (1) |
|
12.1.2 The Atomic Noise Moments |
|
|
186 | (4) |
|
12.2 C-Number Langevin Equations |
|
|
190 | (3) |
|
12.2.1 Adiabatic Approximation |
|
|
191 | (2) |
|
12.3 Phase and Intensity Fluctuations |
|
|
193 | (1) |
|
|
193 | (3) |
|
|
196 | (1) |
|
|
197 | (2) |
13 Quantum Noise Reduction 1 |
|
199 | (12) |
|
13.1 Correlated Emission Laser Systems |
|
|
201 | (8) |
|
13.1.1 The Quantum Beat Laser |
|
|
201 | (7) |
|
|
208 | (1) |
|
|
209 | (1) |
|
|
210 | (1) |
14 Quantum Noise Reduction 2 |
|
211 | (20) |
|
14.1 Introduction to Non-linear Optics |
|
|
211 | (5) |
|
14.1.1 Multiple-Photon Transitions |
|
|
212 | (4) |
|
14.2 Parametric Processes Without Losses |
|
|
216 | (2) |
|
14.3 The Input-Output Theory |
|
|
218 | (4) |
|
14.4 The Degenerate Parametric Oscillator |
|
|
222 | (3) |
|
14.5 Experimental Results |
|
|
225 | (4) |
|
|
229 | (2) |
15 Quantum Phase |
|
231 | (18) |
|
|
231 | (1) |
|
|
232 | (1) |
|
15.3 The Susskind-Glogower Phase |
|
|
233 | (3) |
|
15.4 The Pegg-Barnett Phase |
|
|
236 | (6) |
|
|
240 | (2) |
|
15.5 Phase Fluctuations in a Laser |
|
|
242 | (4) |
|
|
246 | (1) |
|
|
247 | (2) |
16 Quantum Trajectories |
|
249 | (32) |
|
16.1 Montecarlo Wavefunction Method |
|
|
250 | (3) |
|
16.1.1 The Montecarlo Method Is Equivalent, on the Average, to the Master Equation |
|
|
251 | (2) |
|
16.2 The Stochastic Schrodinger Equation |
|
|
253 | (3) |
|
16.3 Stochastic Schrodinger Equations and Dissipative Systems |
|
|
256 | (2) |
|
16.4 Simulation of a Monte Carlo SSE |
|
|
258 | (5) |
|
16.5 Simulation of the Homodyne SSDE |
|
|
263 | (5) |
|
16.6 Numerical Results and Localization |
|
|
268 | (7) |
|
16.6.1 Quantum Jumps Evolution |
|
|
268 | (1) |
|
16.6.2 Diffusion-Like Evolution |
|
|
269 | (1) |
|
16.6.3 Analytical Proof of Localization |
|
|
269 | (6) |
|
|
275 | (1) |
|
|
276 | (2) |
|
|
278 | (3) |
17 Atom Optics |
|
281 | (18) |
|
|
281 | (1) |
|
17.2 Atomic Diffraction from an Optical Standing Wave |
|
|
282 | (8) |
|
|
283 | (3) |
|
|
286 | (4) |
|
|
290 | (7) |
|
|
290 | (1) |
|
17.3.2 Initial Conditions and Solution |
|
|
291 | (1) |
|
17.3.3 Quantum and Classical Foci |
|
|
292 | (1) |
|
17.3.4 Thin Versus Thick Lenses |
|
|
293 | (1) |
|
17.3.5 The Quantum Focal Curve |
|
|
294 | (2) |
|
|
296 | (1) |
|
|
297 | (1) |
|
|
298 | (1) |
18 Measurements, Quantum Limits and All That |
|
299 | (30) |
|
18.1 Quantum Standard Limit |
|
|
299 | (4) |
|
18.1.1 Quantum Standard Limit for a Free Particle |
|
|
299 | (1) |
|
18.1.2 Standard Quantum Limit for an Oscillator |
|
|
300 | (1) |
|
|
301 | (2) |
|
18.2 Quantum Non-demolition (QND) Measurements |
|
|
303 | (3) |
|
|
303 | (2) |
|
18.2.2 Monitoring a Classical Force |
|
|
305 | (1) |
|
18.2.3 Effect of the Measuring Apparatus or Probe |
|
|
306 | (1) |
|
18.3 QND Measurement of the Number of Photons in a Cavity |
|
|
306 | (9) |
|
|
306 | (2) |
|
18.3.2 The System-Probe Interaction |
|
|
308 | (1) |
|
18.3.3 Measuring the Atomic Phase with Ramsey Fields |
|
|
309 | (3) |
|
18.3.4 QND Measurement of the Photon Number |
|
|
312 | (3) |
|
18.4 Quantum Theory of Continuous Photodetection Process |
|
|
315 | (7) |
|
|
315 | (3) |
|
18.4.2 Continuous Measurement in a Two-Mode System: Phase Narrowing |
|
|
318 | (4) |
|
18.5 Generalized Measurements: POVM's |
|
|
322 | (4) |
|
18.5.1 Standard Quantum Measurments |
|
|
322 | (1) |
|
18.5.2 Positive Operator Valued Measures: POVM |
|
|
323 | (3) |
|
|
326 | (1) |
|
|
327 | (2) |
19 Trapped Ions |
|
329 | (26) |
|
|
329 | (8) |
|
19.1.1 General Properties |
|
|
329 | (4) |
|
19.1.2 Stability Analysis |
|
|
333 | (4) |
|
|
337 | (16) |
|
|
337 | (1) |
|
19.2.2 The Model and Effective Hamiltonian |
|
|
338 | (5) |
|
19.2.3 The Lamb-Dicke Expansion and Raman Cooling |
|
|
343 | (1) |
|
19.2.4 The Dynamical Evolution |
|
|
344 | (3) |
|
19.2.5 QND Measurements of Vibrational States |
|
|
347 | (3) |
|
19.2.6 Generation of Non-classical Vibrational States |
|
|
350 | (3) |
|
|
353 | (1) |
|
|
354 | (1) |
20 Decoherence |
|
355 | (20) |
|
20.1 Dynamics of the Correlations |
|
|
358 | (2) |
|
20.2 How Long Does It Take to Decohere? |
|
|
360 | (5) |
|
20.3 Decoherence Free Subspaces |
|
|
365 | (8) |
|
20.3.1 Simple Example: Collective Dephasing |
|
|
365 | (2) |
|
|
367 | (1) |
|
20.3.3 Condition for DFS: Hamiltonian Approach |
|
|
368 | (1) |
|
20.3.4 Condition for DFS: Lindblad Approach |
|
|
369 | (2) |
|
20.3.5 Example: N Spins in Boson Bath |
|
|
371 | (2) |
|
|
373 | (1) |
|
|
373 | (2) |
21 Quantum Bits, Entanglement and Applications |
|
375 | (26) |
|
21.1 Qubits and Quantum Gates |
|
|
375 | (4) |
|
|
379 | (11) |
|
|
379 | (7) |
|
|
386 | (1) |
|
|
387 | (3) |
|
21.3 Quantum Teleportation |
|
|
390 | (8) |
|
21.3.1 Entanglement Distillation |
|
|
393 | (5) |
|
|
398 | (3) |
22 Quantum Correlations |
|
401 | (8) |
|
|
401 | (2) |
|
22.2 Entanglement of Formation: Concurrence |
|
|
403 | (1) |
|
|
404 | (3) |
|
22.4 Some Simple Examples |
|
|
407 | (1) |
|
|
407 | (1) |
|
|
408 | (1) |
23 Quantum Cloning and Processing |
|
409 | (16) |
|
23.1 The No-Cloning Theorem |
|
|
409 | (1) |
|
23.2 The Universal Quantum Copying Machine (UQCM) |
|
|
410 | (1) |
|
23.3 Quantum Copying Machine Implemented by a Circuit |
|
|
411 | (7) |
|
|
412 | (1) |
|
23.3.2 Copying Stage and Output |
|
|
413 | (3) |
|
|
416 | (1) |
|
23.3.4 Summary and Discussion |
|
|
417 | (1) |
|
|
418 | (5) |
|
|
418 | (2) |
|
23.4.2 One Qubit Stochastic Processor |
|
|
420 | (3) |
|
|
423 | (2) |
A Operator Relations |
|
425 | (4) |
|
|
425 | (1) |
|
A.2 Theorem 2: The Baker-Campbell-Haussdorf Relation |
|
|
426 | (1) |
|
A.3 Theorem 3: Similarity Transformation |
|
|
427 | (1) |
|
|
428 | (1) |
B The Method of Characteristics |
|
429 | (4) |
|
|
432 | (1) |
C Proof |
|
433 | (2) |
|
|
434 | (1) |
D Stochastic Processes in a Nutshell |
|
435 | (22) |
|
|
435 | (1) |
|
|
436 | (1) |
|
|
437 | (5) |
|
D.3.1 The Chapman-Kolmogorov Equation |
|
|
438 | (4) |
|
D.4 The Fokker-Planck Equation |
|
|
442 | (4) |
|
|
443 | (2) |
|
D.4.2 General Properties of the Fokker-Planck Equation |
|
|
445 | (1) |
|
D.4.3 Steady-State Solution |
|
|
445 | (1) |
|
D.5 Stochastic Differential Equations |
|
|
446 | (7) |
|
|
446 | (3) |
|
D.5.2 Ito Versus Stratonovich |
|
|
449 | (2) |
|
|
451 | (2) |
|
|
453 | (3) |
|
|
456 | (1) |
E Derivation of the Homodyne Stochastic Schrodinger Differential Equation |
|
457 | (4) |
F Fluctuations |
|
461 | (2) |
G Discrimination of Quantum States: Applications of the POVM Formalism |
|
463 | (6) |
|
G.1 Unambiguous Discrimination of Two Pure States |
|
|
463 | (2) |
|
G.2 Minimum-Error Discrimination of Two Quantum States |
|
|
465 | (2) |
|
|
467 | (2) |
H The No-Cloning Theorem |
|
469 | (2) |
|
|
469 | (2) |
I The Universal Quantum Cloning Machine |
|
471 | (4) |
|
|
473 | (2) |
J Hints to Solve the Problems |
|
475 | (6) |
Index |
|
481 | |