Muutke küpsiste eelistusi

Quantum Optics: Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence Third Edition 2016 [Kõva köide]

  • Formaat: Hardback, 485 pages, kõrgus x laius: 235x155 mm, kaal: 8808 g, 3 Illustrations, color; 90 Illustrations, black and white; XXII, 485 p. 93 illus., 3 illus. in color., 1 Hardback
  • Ilmumisaeg: 25-Apr-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319290355
  • ISBN-13: 9783319290355
Teised raamatud teemal:
  • Kõva köide
  • Hind: 107,76 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 485 pages, kõrgus x laius: 235x155 mm, kaal: 8808 g, 3 Illustrations, color; 90 Illustrations, black and white; XXII, 485 p. 93 illus., 3 illus. in color., 1 Hardback
  • Ilmumisaeg: 25-Apr-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319290355
  • ISBN-13: 9783319290355
Teised raamatud teemal:
This new edition gives a unique and broad coverage of basic laser-related phenomena that allow graduate students, scientists and engineers to carry out research in quantum optics and laser physics. It covers quantization of the electromagnetic field, quantum theory of coherence, atom-field interaction models, resonance fluorescence, quantum theory of damping, laser theory using both the master equation and the Langevin theory, the correlated emission laser, input-output theory with applications to non-linear optics, quantum trajectories, quantum non-demolition measurements and generation of non-classical vibrational states of ions in a Paul trap. In this third edition, there is an enlarged chapter on trapped ions, as well as new sections on quantum computing and quantum bits with applications. There is also additional material included for quantum processing and entanglement. These topics are presented in a unified and didactic manner, each chapter is accompanied by specific probl

ems and hints to solutions to deepen the knowledge.

Einstein"s Theory of Atom-Radiation Interaction.- Atom-Field Interaction: Semi classical Approach.- Quantization of the Electromagnetic Field.- States of the Electromagnetic Field I.- States of the Electromagnetic Field II.- Quantum Theory of Coherence.- Phase Space Description.- Atom-Field Interaction.- System-Reservoir Interactions.- Resonance Fluorescence.- Quantum Laser Theory: Master Equation Approach.- Quantum Laser Theory: Langevin Approach.- Quantum Noise Reduction 1.- Quantum Noise Reduction 2.- Quantum Phase.- Quantum Trajectories.- Atom Optics.- Measurements, Quantum Limits and All That.- Trapped Ions.- Decoherence.- Quantum Bits, Entanglement and Applications.- Quantum Correlations.- Quantum Cloning and Processing.- Appendices: Operator Relations.- The Method of Characteristics.- Proof.- Stochastic Processes in a Nutshell.- Derivation of the Homodyne Stochastic Schrödinger Differential Equation.- Fluctuations.- Discrimination.- The No-Cloning Theorem.- The Universal Qu

antum Cloning Machine.- Hints to Solve the Problems.- Index.

Arvustused

The third edition of this book contains extensive and thorough coverage of basic laser-related phenomena including quantization of the electromagnetic field, quantum theory of coherence, laser theory using both the master equation and the Langevin theory, and generation of non-classical vibrational states of ions in a Paul trap. it will be of interest to a great variety of readers, including graduate students, scientists and engineers. It is a valuable addition to textbook literature in quantum optics. (Christian Brosseau, Optics & Photonics News, osa-opn-org, March, 2017)

1 Einstein's Theory of Atom-Radiation Interaction 1(12)
1.1 The A and B Coefficients
2(1)
1.2 Thermal Equilibrium
3(1)
1.3 Photon Distribution and Fluctuations
4(1)
1.4 Light Beam Incident on Atoms
5(1)
1.5 An Elementary Laser Theory
6(4)
1.5.1 Threshold and Population Inversion
7(1)
1.5.2 Steady State
8(1)
1.5.3 Linear Stability Analysis
8(2)
References
10(1)
Further Reading
11(2)
2 Atom-Field Interaction: Semiclassical Approach 13(12)
2.1 Broad-Band Radiation Spectrum
17(1)
2.2 Rabi Oscillations
18(1)
2.3 Bloch's Equations
19(2)
2.4 Decay to an Unobserved Level
21(1)
2.5 Decay Between Levels
21(1)
2.6 Optical Nutation
22(1)
References
23(1)
Further Reading
23(2)
3 Quantization of the Electromagnetic Field 25(10)
3.1 Fock States
29(1)
3.2 Density of Modes
30(1)
3.3 Commutation Relations
31(2)
Reference
33(1)
Further Reading
34(1)
4 States of the Electromagnetic Field I 35(12)
4.1 Further Properties
36(4)
4.1.1 Coherent States Are Minimum Uncertainty States
36(1)
4.1.2 Coherent States Are Not Orthogonal
37(1)
4.1.3 Coherent States Are Overcomplete
37(1)
4.1.4 The Displacement Operator
38(1)
4.1.5 Photon Statistics
39(1)
4.1.6 Coordinate Representation
39(1)
4.2 Mixed State: Thermal Radiation
40(5)
References
45(1)
Further Reading
45(2)
5 States of the Electromagnetic Field II 47(14)
5.1 Squeezed States: General Properties and Detection
47(7)
5.1.1 The Squeeze Operator and the Squeezed State
50(1)
5.1.2 The Squeezed State Is an Eigenstate of A
51(1)
5.1.3 Calculation of Moments with Squeezed States
51(1)
5.1.4 Quadrature Fluctuations
52(1)
5.1.5 Photon Statistics
53(1)
5.2 Multimode Squeezed States
54(1)
5.3 Detection of Squeezed States
55(4)
5.3.1 Ordinary Homodyne Detection
55(2)
5.3.2 Balanced Homodyne Detection
57(1)
5.3.3 Heterodyne Detection
58(1)
References
59(2)
6 Quantum Theory of Coherence 61(24)
6.1 One-Atom Detector
63(3)
6.2 The n-Atom Detector
66(1)
6.3 General Properties of the Correlation Functions
67(2)
6.4 Young's Interference and First-Order Correlation
69(3)
6.5 Second-Order Correlations: Photon Bunching and Antibunching
72(5)
6.5.1 Classical Second-Order Coherence
72(3)
6.5.2 Quantum Theory of Second-Order Coherence
75(2)
6.6 Photon Counting
77(6)
6.6.1 Some Simple Examples
80(1)
6.6.2 Quantum Mechanical Photon Count Distribution
81(1)
6.6.3 Particular Examples
82(1)
References
83(1)
Further Reading
83(2)
7 Phase Space Description 85(14)
7.1 Q-Representation: Antinormal Ordering
85(3)
7.1.1 Normalization
86(1)
7.1.2 Average of Antinormally Ordered Products
86(1)
7.1.3 Some Examples
86(1)
7.1.4 The Density Operator in Terms of the Function Q
87(1)
7.2 Characteristic Function
88(1)
7.3 P Representation: Normal Ordering
89(4)
7.3.1 Normalization
89(1)
7.3.2 Averages of Normally Ordered Products
90(1)
7.3.3 Some Interesting Properties
90(1)
7.3.4 Some Examples
91(2)
7.4 The Wigner Distribution: Symmetric Ordering
93(4)
7.4.1 Marginals
94(1)
7.4.2 Product Rule
94(1)
7.4.3 Moments
95(2)
References
97(1)
Further Reading
98(1)
8 Atom-Field Interaction 99(16)
8.1 Atom-Field Hamiltonian and the Dipole Approximation
99(3)
8.2 A Two-Level Atom Interacting with a Single Field Mode
102(2)
8.3 The Dressed State Picture: Quantum Rabi Oscillations
104(4)
8.4 Collapse and Revivals
108(4)
References
112(1)
Further Reading
112(3)
9 System-Reservoir Interactions 115(24)
9.1 Quantum Theory of Damping
115(4)
9.2 General Properties
119(1)
9.3 Expectation Values of Relevant Physical Quantities
119(2)
9.4 Time Evolution of the Density Matrix Elements
121(3)
9.5 The Glauber-Sudarshan Representation, and the Fokker-Planck Equation
124(1)
9.6 Time-Dependent Solution: The Method of the Eigenfunctions
125(2)
9.6.1 General Solution
126(1)
9.7 Langevin's Equations
127(3)
9.7.1 Calculation of the Correlation Function (F(t')F(t") B
129(1)
9.7.2 Differential Equation for the Photon Number
129(1)
9.8 Other Master Equations
130(7)
9.8.1 Two-Level Atom in a Thermal Bath
130(1)
9.8.2 Damped Harmonic Oscillator in a Squeezed Bath
131(3)
9.8.3 Application: Spontaneous Decay in a Squeezed Vaccume
134(3)
References
137(1)
Further Reading
137(2)
10 Resonance Fluorescence 139(18)
10.1 Background
139(2)
10.2 Heisenberg' s Equations
141(3)
10.3 Spectral Density, and the Wiener-Khinchine Theorem
144(3)
10.4 Emission Spectra from Strongly Driven Two-Level Atoms
147(4)
10.5 Intensity Correlations
151(4)
References
155(1)
Further Reading
156(1)
11 Quantum Laser Theory: Master Equation Approach 157(26)
11.1 Heuristic Discussion of Injection Statistics
158(2)
11.2 Master Equation for Generalized Pump Statistics
160(1)
11.3 The Quantum Theory of the Laser: Random Injection (p = 0)
161(8)
11.3.1 Photon Statistics
163(2)
11.3.2 The Fokker-Planck Equation: Laser Linewidth
165(1)
11.3.3 Alternative Derivation of the Laser Linewidth
166(3)
11.4 Quantum Theory of the Micromaser: Random injection (p = 0)
169(8)
11.4.1 Generalities
169(1)
11.4.2 The Micromaser
170(3)
11.4.3 Trapping States
173(4)
11.5 Quantum Theory of the Laser and the Micromaser with Pump Statistics (p not = to 0)
177(4)
References
181(1)
Further Reading
182(1)
12 Quantum Laser Theory: Langevin Approach 183(16)
12.1 Quantum Langevin Equations
183(7)
12.1.1 The Generalized Einstein's Relations
185(1)
12.1.2 The Atomic Noise Moments
186(4)
12.2 C-Number Langevin Equations
190(3)
12.2.1 Adiabatic Approximation
191(2)
12.3 Phase and Intensity Fluctuations
193(1)
12.4 Discussion
193(3)
References
196(1)
Further Reading
197(2)
13 Quantum Noise Reduction 1 199(12)
13.1 Correlated Emission Laser Systems
201(8)
13.1.1 The Quantum Beat Laser
201(7)
13.1.2 Other CEL Systems
208(1)
References
209(1)
Further Reading
210(1)
14 Quantum Noise Reduction 2 211(20)
14.1 Introduction to Non-linear Optics
211(5)
14.1.1 Multiple-Photon Transitions
212(4)
14.2 Parametric Processes Without Losses
216(2)
14.3 The Input-Output Theory
218(4)
14.4 The Degenerate Parametric Oscillator
222(3)
14.5 Experimental Results
225(4)
References
229(2)
15 Quantum Phase 231(18)
15.1 The Dirac Phase
231(1)
15.2 The Louisell Phase
232(1)
15.3 The Susskind-Glogower Phase
233(3)
15.4 The Pegg-Barnett Phase
236(6)
15.4.1 Applications
240(2)
15.5 Phase Fluctuations in a Laser
242(4)
References
246(1)
Further Reading
247(2)
16 Quantum Trajectories 249(32)
16.1 Montecarlo Wavefunction Method
250(3)
16.1.1 The Montecarlo Method Is Equivalent, on the Average, to the Master Equation
251(2)
16.2 The Stochastic Schrodinger Equation
253(3)
16.3 Stochastic Schrodinger Equations and Dissipative Systems
256(2)
16.4 Simulation of a Monte Carlo SSE
258(5)
16.5 Simulation of the Homodyne SSDE
263(5)
16.6 Numerical Results and Localization
268(7)
16.6.1 Quantum Jumps Evolution
268(1)
16.6.2 Diffusion-Like Evolution
269(1)
16.6.3 Analytical Proof of Localization
269(6)
16.7 Conclusions
275(1)
References
276(2)
Further Reading
278(3)
17 Atom Optics 281(18)
17.1 Optical Elements
281(1)
17.2 Atomic Diffraction from an Optical Standing Wave
282(8)
17.2.1 Theory
283(3)
17.2.2 Particular Cases
286(4)
17.3 Atomic Focusing
290(7)
17.3.1 The Model
290(1)
17.3.2 Initial Conditions and Solution
291(1)
17.3.3 Quantum and Classical Foci
292(1)
17.3.4 Thin Versus Thick Lenses
293(1)
17.3.5 The Quantum Focal Curve
294(2)
17.3.6 Aberrations
296(1)
References
297(1)
Further Reading
298(1)
18 Measurements, Quantum Limits and All That 299(30)
18.1 Quantum Standard Limit
299(4)
18.1.1 Quantum Standard Limit for a Free Particle
299(1)
18.1.2 Standard Quantum Limit for an Oscillator
300(1)
18.1.3 Thermal Effects
301(2)
18.2 Quantum Non-demolition (QND) Measurements
303(3)
18.2.1 The Free System
303(2)
18.2.2 Monitoring a Classical Force
305(1)
18.2.3 Effect of the Measuring Apparatus or Probe
306(1)
18.3 QND Measurement of the Number of Photons in a Cavity
306(9)
18.3.1 The Model
306(2)
18.3.2 The System-Probe Interaction
308(1)
18.3.3 Measuring the Atomic Phase with Ramsey Fields
309(3)
18.3.4 QND Measurement of the Photon Number
312(3)
18.4 Quantum Theory of Continuous Photodetection Process
315(7)
18.4.1 Introduction
315(3)
18.4.2 Continuous Measurement in a Two-Mode System: Phase Narrowing
318(4)
18.5 Generalized Measurements: POVM's
322(4)
18.5.1 Standard Quantum Measurments
322(1)
18.5.2 Positive Operator Valued Measures: POVM
323(3)
References
326(1)
Further Reading
327(2)
19 Trapped Ions 329(26)
19.1 Paul Trap
329(8)
19.1.1 General Properties
329(4)
19.1.2 Stability Analysis
333(4)
19.2 Trapped Ions
337(16)
19.2.1 Introduction
337(1)
19.2.2 The Model and Effective Hamiltonian
338(5)
19.2.3 The Lamb-Dicke Expansion and Raman Cooling
343(1)
19.2.4 The Dynamical Evolution
344(3)
19.2.5 QND Measurements of Vibrational States
347(3)
19.2.6 Generation of Non-classical Vibrational States
350(3)
References
353(1)
Further Reading
354(1)
20 Decoherence 355(20)
20.1 Dynamics of the Correlations
358(2)
20.2 How Long Does It Take to Decohere?
360(5)
20.3 Decoherence Free Subspaces
365(8)
20.3.1 Simple Example: Collective Dephasing
365(2)
20.3.2 General Treatment
367(1)
20.3.3 Condition for DFS: Hamiltonian Approach
368(1)
20.3.4 Condition for DFS: Lindblad Approach
369(2)
20.3.5 Example: N Spins in Boson Bath
371(2)
References
373(1)
Further Reading
373(2)
21 Quantum Bits, Entanglement and Applications 375(26)
21.1 Qubits and Quantum Gates
375(4)
21.2 Entanglement
379(11)
21.2.1 Pure States
379(7)
21.2.2 Mixed States
386(1)
21.2.3 Bell Inequalities
387(3)
21.3 Quantum Teleportation
390(8)
21.3.1 Entanglement Distillation
393(5)
References
398(3)
22 Quantum Correlations 401(8)
22.1 Introduction
401(2)
22.2 Entanglement of Formation: Concurrence
403(1)
22.3 Quantum Discord
404(3)
22.4 Some Simple Examples
407(1)
References
407(1)
Further Reading
408(1)
23 Quantum Cloning and Processing 409(16)
23.1 The No-Cloning Theorem
409(1)
23.2 The Universal Quantum Copying Machine (UQCM)
410(1)
23.3 Quantum Copying Machine Implemented by a Circuit
411(7)
23.3.1 Preparation Stage
412(1)
23.3.2 Copying Stage and Output
413(3)
23.3.3 Output States
416(1)
23.3.4 Summary and Discussion
417(1)
23.4 Quantum Processors
418(5)
23.4.1 Introduction
418(2)
23.4.2 One Qubit Stochastic Processor
420(3)
References
423(2)
A Operator Relations 425(4)
A.1 Theorem 1
425(1)
A.2 Theorem 2: The Baker-Campbell-Haussdorf Relation
426(1)
A.3 Theorem 3: Similarity Transformation
427(1)
Reference
428(1)
B The Method of Characteristics 429(4)
Reference
432(1)
C Proof 433(2)
References
434(1)
D Stochastic Processes in a Nutshell 435(22)
D.1 Introduction
435(1)
D.2 Probability Concepts
436(1)
D.3 Stochastic Processes
437(5)
D.3.1 The Chapman-Kolmogorov Equation
438(4)
D.4 The Fokker-Planck Equation
442(4)
D.4.1 The Wiener Process
443(2)
D.4.2 General Properties of the Fokker-Planck Equation
445(1)
D.4.3 Steady-State Solution
445(1)
D.5 Stochastic Differential Equations
446(7)
D.5.1 Introduction
446(3)
D.5.2 Ito Versus Stratonovich
449(2)
D.5.3 Ito's Formula
451(2)
D.6 Approximate Methods
453(3)
References
456(1)
E Derivation of the Homodyne Stochastic Schrodinger Differential Equation 457(4)
F Fluctuations 461(2)
G Discrimination of Quantum States: Applications of the POVM Formalism 463(6)
G.1 Unambiguous Discrimination of Two Pure States
463(2)
G.2 Minimum-Error Discrimination of Two Quantum States
465(2)
Reference
467(2)
H The No-Cloning Theorem 469(2)
Reference
469(2)
I The Universal Quantum Cloning Machine 471(4)
Reference
473(2)
J Hints to Solve the Problems 475(6)
Index 481
Prof. Dr. Miguel Orszag Pontificia Universidad Católica de Chile Facultad de Física Av. Vicuña Mackenna 4860 Macul, Santiago Chile morszag@fis.puc.cl