Muutke küpsiste eelistusi

Quarks Bound by Chiral Fields: The Quark Structure of the Vacuum and of Light Mesons and Baryons [Kõva köide]

(, Centre d'Études de Saday, France)
  • Formaat: Hardback, 224 pages, kõrgus x laius x paksus: 242x161x17 mm, kaal: 462 g, line figures, tables
  • Sari: Oxford Studies in Nuclear Physics 21
  • Ilmumisaeg: 05-Jun-1997
  • Kirjastus: Oxford University Press
  • ISBN-10: 019851784X
  • ISBN-13: 9780198517849
  • Formaat: Hardback, 224 pages, kõrgus x laius x paksus: 242x161x17 mm, kaal: 462 g, line figures, tables
  • Sari: Oxford Studies in Nuclear Physics 21
  • Ilmumisaeg: 05-Jun-1997
  • Kirjastus: Oxford University Press
  • ISBN-10: 019851784X
  • ISBN-13: 9780198517849
The structure of light hadrons is dominated by the spontaneously broken chiral symmetry of the strongly interacting (QCD) vacuum. Low energy properties of light hadrons can be described in terms of quarks interacting with chiral fields. This book gives a comprehensive account of a large class of models which describe the restoration of chiral symmetry at high temperature and density, the effective interactions between quarks, mesons as solutions of the Beth-Salpeter equation, and baryons in terms of solitions which rotate in flavor space. An in-depth analysis of regularization is given, including regularization by delocalized fields. Symmetry conserving approximations are formulated using both path integral and Feynmann graph methods. The book's style is pedagogical and well-suited to graduate and Ph.D. students who want to learn the techniques used in present day research. It can also serve as a reference for research and lecture courses.
1 Introduction
1(3)
2 Quark bilinear operators
4(6)
2.1 Lorentz transformations of qXXXq bilinear operators
4(1)
2.2 Isospin and flavor rotations
4(2)
2.3 Right and left rotations
6(1)
2.4 Quantum numbers of qXXXq operators
7(1)
2.5 Diquark bilinear operators
8(2)
3 Effective quark interactions
10(10)
3.1 Gluon exchange interactions
10(4)
3.1.1 Gluon exchange in the colorless qq channel
11(2)
3.1.2 Gluon exchange in the diquark channel
13(1)
3.2 Instanton induced quark interactions
14(3)
3.3 Comparison between interactions
17(1)
3.4 Non-local effective interactions
17(3)
4 The Nambu Jona-Lasinio model
20(14)
4.1 The lagrangian and the hamiltonian of the Nambu Jona-Lasinio model
20(1)
4.2 The partition function and the euclidean action.
21(1)
4.3 Bosonization of the euclidean action
22(4)
4.4 Three equivalent descriptions of the system
26(1)
4.5 Symmetries of the Nambu Jona-Lasinio model
27(4)
4.5.1 Flavor symmetry
28(1)
4.5.2 Chiral symmetry
29(1)
4.5.3 U(A) (1) symmetry
30(1)
4.6 The case of large quark masses
31(3)
4.6.1 Suppression of the SU (N(f)) generators
31(1)
4.6.2 Heavy quark spin symmetry
32(2)
5 The equivalent linear sigma model
34(16)
5.1 The Nambu Jona-Lasinio action with scalar fields
34(2)
5.2 The gap equations
36(2)
5.3 The large N(c) limit and caveats thereon
38(1)
5.4 The equivalent linear sigma model in a simplified SU (2) (f) case
39(2)
5.5 Setting the scale by fitting f(XXX)
41(3)
5.6 SU (3)(f) scalar fields
44(6)
5.6.1 The pseudoscalar XXX, K, XXX nonet (L = O, J(P) = O(-))
45(2)
5.6.2 The scalar a(o), K(*), f(o) nonet (L = 1, J(P) = O(+))
47(3)
6 Regularization
50(10)
6.1 Non-local regularizations
51(4)
6.1.1 Regularization by delocalized fields
51(2)
6.1.2 Quarks which cannot materialize on-shell
53(2)
6.2 3-momentum cut-offs
55(1)
6.3 Regularizations of the real part
56(4)
6.3.1 Proper-time regularization
57(1)
6.3.2 Pauli-Villars regularization
58(2)
7 Correlation functions: basic properties
60(12)
7.1 Spectral decomposition of correlation functions
60(2)
7.2 The interpretation of poles in the complex q(2) plane
62(3)
7.2.1 Poles on the negative real axis: on-shell particles
62(1)
7.2.2 Poles on the Positive real axis: Landau ghosts
63(1)
7.2.3 Poles in the complex q(2) plane
64(1)
7.3 Dispersion relations
65(1)
7.4 The generating functional and the effective action
66(4)
7.4.1 Definition of the effective action
67(1)
7.4.2 Properties of the effective action
67(1)
7.4.3 The effective action XXX in the one-loop approximation
68(2)
7.5 The generating functional of quark bilinear forms
70(2)
8 Symmetry conserving approximations
72(15)
8.1 A generic form of the action
72(1)
8.2 Feynman graphs
73(3)
8.2.1 Unlabeled Feynman graphs for the generating functional
73(2)
8.2.2 Labeled Feynman graphs for correlation functions of the fields
75(1)
8.2.3 Labeled Feynman graphs for correlation functions of quark bilinear operators
75(1)
8.3 The Feynman graph expansion of the effective action
76(3)
8.4 The symmetry conserving property
79(1)
8.5 The leading order contribution in N(c)
80(1)
8.6 Next to leading order contribution in N(c)
81(1)
8.7 Self-consistent Schwinger-Dyson and Bethe-Salpeter equations
82(5)
9 Correlation functions in the Nambu Jona-Lasinio model
87(16)
9.1 Second order expansion of the action
87(2)
9.2 Meson propagators in the scalar channels
89(5)
9.2.1 Correlation functions of the pseudoscalar nonet
91(1)
9.2.2 The decay constants f(XXX) and f(K)
92(1)
9.2.3 The quark condensates
93(1)
9.2.4 Correlation functions of the scalar nonet
93(1)
9.3 Vector meson propagators
94(5)
9.3.1 Expansion of the action in powers of the vector fields
94(3)
9.3.2 The p(770) and w(782) propagators
97(1)
9.3.3 The pion propagator and f(XXX)
97(1)
9.3.4 The unbound a(1) (1235) meson and the dangers of gradient expansions
98(1)
9.4 Electromagnetic gauge fields in non-local models
99(3)
9.5 Electroweak fields in regularized models
102(1)
10 Overview of results in the meson sector
103(20)
10.1 The model parameters and fits to the pseudoscalar nonet
103(3)
10.2 Chiral perturbation theory
106(1)
10.3 Radiative decays of pseudoscalar and vector mesons
107(1)
10.4 Restoration of chiral symmetry at finite baryonic density
108(6)
10.4.1 Simple model of spontaneous chiral symmetry breaking
108(1)
10.4.2 Quarks or nucleons in the Fermi sea?
109(3)
10.4.3 Mesons propagating in a dense medium
112(2)
10.5 Systems at finite temperature
114(9)
10.5.1 The mathematical tool
115(3)
10.5.2 The physical content
118(2)
10.5.3 Restoration of chiral symmetry at high temperatures
120(3)
11 Further chiral quark models
123(11)
11.1 The Diakonov Petrov model.
123(1)
11.2 Scaled models involving a dilation field
124(3)
11.3 The Gell-Mann Levy model
127(5)
11.3.1 The action of the model
128(1)
11.3.2 Comparison of the Gell-Mann Levy and the Nambu Jona-Lasinio models
128(2)
11.3.3 The Landau ghost
130(2)
11.4 Quark confinement in color dielectric models
132(2)
12 Chiral Solitons
134(21)
12.1 u and d quarks interacting with a hedgehog field
135(4)
12.2 Skyrme's topological density
139(3)
12.3 The soliton calculated with proper-time regularization
142(2)
12.4 Hermitian and antihermitian probes
144(3)
12.5 The baryon number and valence orbits
147(2)
12.6 Self-consistent symmetries of SU (3)(f) solitons
149(2)
12.7 Spontaneously broken symmetries
151(1)
12.8 SU (2)(f) solitons in the proper-time regularized Diakonov Petrov model
151(1)
12.9 Problems with soliton stability
152(1)
12.10 A problem related to vector interactions
153(2)
13 Rotations of solitons in flavor space
155(17)
13.1 Introduction of collective coordinates
156(1)
13.2 Rotations of a hedgehog soliton
157(2)
13.3 SU (2)(f) rotations of a G = O soliton
159(4)
13.4 The coupling of operators to the rotating soliton
163(3)
13.5 Calculated nucleon properties
166(1)
13.6 SU (3)(f) rotations of the G = O soliton
166(3)
13.7 Calculated properties of the N (939) octet
169(3)
A SU (N) matrices, Dirac matrices, Fierz transformations
172(6)
A.1 Properties of SU (N) matrices
172(3)
A.1.1 Fierz transformations of products of SU (N) matrices
173(2)
A.2 U (N) matrices
175(1)
A.3 Fierz transformations of Dirac matrices.
176(2)
B The SU (N) rotor
178(12)
B.1 The hamiltonian and the intrinsic generators
178(3)
B.2 Intrinsic and lab frame generators
181(1)
B.3 The partition function
182(1)
B.4 The SU (2) rotor
183(2)
B.5 The SU (3) rotor
185(5)
C Bosonization
190(2)
C.1 Gaussian transformations and Wick theorems
190(2)
References 192(9)
Index 201