|
|
1 | (3) |
|
2 Quark bilinear operators |
|
|
4 | (6) |
|
2.1 Lorentz transformations of qXXXq bilinear operators |
|
|
4 | (1) |
|
2.2 Isospin and flavor rotations |
|
|
4 | (2) |
|
2.3 Right and left rotations |
|
|
6 | (1) |
|
2.4 Quantum numbers of qXXXq operators |
|
|
7 | (1) |
|
2.5 Diquark bilinear operators |
|
|
8 | (2) |
|
3 Effective quark interactions |
|
|
10 | (10) |
|
3.1 Gluon exchange interactions |
|
|
10 | (4) |
|
3.1.1 Gluon exchange in the colorless qq channel |
|
|
11 | (2) |
|
3.1.2 Gluon exchange in the diquark channel |
|
|
13 | (1) |
|
3.2 Instanton induced quark interactions |
|
|
14 | (3) |
|
3.3 Comparison between interactions |
|
|
17 | (1) |
|
3.4 Non-local effective interactions |
|
|
17 | (3) |
|
4 The Nambu Jona-Lasinio model |
|
|
20 | (14) |
|
4.1 The lagrangian and the hamiltonian of the Nambu Jona-Lasinio model |
|
|
20 | (1) |
|
4.2 The partition function and the euclidean action. |
|
|
21 | (1) |
|
4.3 Bosonization of the euclidean action |
|
|
22 | (4) |
|
4.4 Three equivalent descriptions of the system |
|
|
26 | (1) |
|
4.5 Symmetries of the Nambu Jona-Lasinio model |
|
|
27 | (4) |
|
|
28 | (1) |
|
|
29 | (1) |
|
|
30 | (1) |
|
4.6 The case of large quark masses |
|
|
31 | (3) |
|
4.6.1 Suppression of the SU (N(f)) generators |
|
|
31 | (1) |
|
4.6.2 Heavy quark spin symmetry |
|
|
32 | (2) |
|
5 The equivalent linear sigma model |
|
|
34 | (16) |
|
5.1 The Nambu Jona-Lasinio action with scalar fields |
|
|
34 | (2) |
|
|
36 | (2) |
|
5.3 The large N(c) limit and caveats thereon |
|
|
38 | (1) |
|
5.4 The equivalent linear sigma model in a simplified SU (2) (f) case |
|
|
39 | (2) |
|
5.5 Setting the scale by fitting f(XXX) |
|
|
41 | (3) |
|
5.6 SU (3)(f) scalar fields |
|
|
44 | (6) |
|
5.6.1 The pseudoscalar XXX, K, XXX nonet (L = O, J(P) = O(-)) |
|
|
45 | (2) |
|
5.6.2 The scalar a(o), K(*), f(o) nonet (L = 1, J(P) = O(+)) |
|
|
47 | (3) |
|
|
50 | (10) |
|
6.1 Non-local regularizations |
|
|
51 | (4) |
|
6.1.1 Regularization by delocalized fields |
|
|
51 | (2) |
|
6.1.2 Quarks which cannot materialize on-shell |
|
|
53 | (2) |
|
|
55 | (1) |
|
6.3 Regularizations of the real part |
|
|
56 | (4) |
|
6.3.1 Proper-time regularization |
|
|
57 | (1) |
|
6.3.2 Pauli-Villars regularization |
|
|
58 | (2) |
|
7 Correlation functions: basic properties |
|
|
60 | (12) |
|
7.1 Spectral decomposition of correlation functions |
|
|
60 | (2) |
|
7.2 The interpretation of poles in the complex q(2) plane |
|
|
62 | (3) |
|
7.2.1 Poles on the negative real axis: on-shell particles |
|
|
62 | (1) |
|
7.2.2 Poles on the Positive real axis: Landau ghosts |
|
|
63 | (1) |
|
7.2.3 Poles in the complex q(2) plane |
|
|
64 | (1) |
|
|
65 | (1) |
|
7.4 The generating functional and the effective action |
|
|
66 | (4) |
|
7.4.1 Definition of the effective action |
|
|
67 | (1) |
|
7.4.2 Properties of the effective action |
|
|
67 | (1) |
|
7.4.3 The effective action XXX in the one-loop approximation |
|
|
68 | (2) |
|
7.5 The generating functional of quark bilinear forms |
|
|
70 | (2) |
|
8 Symmetry conserving approximations |
|
|
72 | (15) |
|
8.1 A generic form of the action |
|
|
72 | (1) |
|
|
73 | (3) |
|
8.2.1 Unlabeled Feynman graphs for the generating functional |
|
|
73 | (2) |
|
8.2.2 Labeled Feynman graphs for correlation functions of the fields |
|
|
75 | (1) |
|
8.2.3 Labeled Feynman graphs for correlation functions of quark bilinear operators |
|
|
75 | (1) |
|
8.3 The Feynman graph expansion of the effective action |
|
|
76 | (3) |
|
8.4 The symmetry conserving property |
|
|
79 | (1) |
|
8.5 The leading order contribution in N(c) |
|
|
80 | (1) |
|
8.6 Next to leading order contribution in N(c) |
|
|
81 | (1) |
|
8.7 Self-consistent Schwinger-Dyson and Bethe-Salpeter equations |
|
|
82 | (5) |
|
9 Correlation functions in the Nambu Jona-Lasinio model |
|
|
87 | (16) |
|
9.1 Second order expansion of the action |
|
|
87 | (2) |
|
9.2 Meson propagators in the scalar channels |
|
|
89 | (5) |
|
9.2.1 Correlation functions of the pseudoscalar nonet |
|
|
91 | (1) |
|
9.2.2 The decay constants f(XXX) and f(K) |
|
|
92 | (1) |
|
9.2.3 The quark condensates |
|
|
93 | (1) |
|
9.2.4 Correlation functions of the scalar nonet |
|
|
93 | (1) |
|
9.3 Vector meson propagators |
|
|
94 | (5) |
|
9.3.1 Expansion of the action in powers of the vector fields |
|
|
94 | (3) |
|
9.3.2 The p(770) and w(782) propagators |
|
|
97 | (1) |
|
9.3.3 The pion propagator and f(XXX) |
|
|
97 | (1) |
|
9.3.4 The unbound a(1) (1235) meson and the dangers of gradient expansions |
|
|
98 | (1) |
|
9.4 Electromagnetic gauge fields in non-local models |
|
|
99 | (3) |
|
9.5 Electroweak fields in regularized models |
|
|
102 | (1) |
|
10 Overview of results in the meson sector |
|
|
103 | (20) |
|
10.1 The model parameters and fits to the pseudoscalar nonet |
|
|
103 | (3) |
|
10.2 Chiral perturbation theory |
|
|
106 | (1) |
|
10.3 Radiative decays of pseudoscalar and vector mesons |
|
|
107 | (1) |
|
10.4 Restoration of chiral symmetry at finite baryonic density |
|
|
108 | (6) |
|
10.4.1 Simple model of spontaneous chiral symmetry breaking |
|
|
108 | (1) |
|
10.4.2 Quarks or nucleons in the Fermi sea? |
|
|
109 | (3) |
|
10.4.3 Mesons propagating in a dense medium |
|
|
112 | (2) |
|
10.5 Systems at finite temperature |
|
|
114 | (9) |
|
10.5.1 The mathematical tool |
|
|
115 | (3) |
|
10.5.2 The physical content |
|
|
118 | (2) |
|
10.5.3 Restoration of chiral symmetry at high temperatures |
|
|
120 | (3) |
|
11 Further chiral quark models |
|
|
123 | (11) |
|
11.1 The Diakonov Petrov model. |
|
|
123 | (1) |
|
11.2 Scaled models involving a dilation field |
|
|
124 | (3) |
|
11.3 The Gell-Mann Levy model |
|
|
127 | (5) |
|
11.3.1 The action of the model |
|
|
128 | (1) |
|
11.3.2 Comparison of the Gell-Mann Levy and the Nambu Jona-Lasinio models |
|
|
128 | (2) |
|
|
130 | (2) |
|
11.4 Quark confinement in color dielectric models |
|
|
132 | (2) |
|
|
134 | (21) |
|
12.1 u and d quarks interacting with a hedgehog field |
|
|
135 | (4) |
|
12.2 Skyrme's topological density |
|
|
139 | (3) |
|
12.3 The soliton calculated with proper-time regularization |
|
|
142 | (2) |
|
12.4 Hermitian and antihermitian probes |
|
|
144 | (3) |
|
12.5 The baryon number and valence orbits |
|
|
147 | (2) |
|
12.6 Self-consistent symmetries of SU (3)(f) solitons |
|
|
149 | (2) |
|
12.7 Spontaneously broken symmetries |
|
|
151 | (1) |
|
12.8 SU (2)(f) solitons in the proper-time regularized Diakonov Petrov model |
|
|
151 | (1) |
|
12.9 Problems with soliton stability |
|
|
152 | (1) |
|
12.10 A problem related to vector interactions |
|
|
153 | (2) |
|
13 Rotations of solitons in flavor space |
|
|
155 | (17) |
|
13.1 Introduction of collective coordinates |
|
|
156 | (1) |
|
13.2 Rotations of a hedgehog soliton |
|
|
157 | (2) |
|
13.3 SU (2)(f) rotations of a G = O soliton |
|
|
159 | (4) |
|
13.4 The coupling of operators to the rotating soliton |
|
|
163 | (3) |
|
13.5 Calculated nucleon properties |
|
|
166 | (1) |
|
13.6 SU (3)(f) rotations of the G = O soliton |
|
|
166 | (3) |
|
13.7 Calculated properties of the N (939) octet |
|
|
169 | (3) |
|
A SU (N) matrices, Dirac matrices, Fierz transformations |
|
|
172 | (6) |
|
A.1 Properties of SU (N) matrices |
|
|
172 | (3) |
|
A.1.1 Fierz transformations of products of SU (N) matrices |
|
|
173 | (2) |
|
|
175 | (1) |
|
A.3 Fierz transformations of Dirac matrices. |
|
|
176 | (2) |
|
|
178 | (12) |
|
B.1 The hamiltonian and the intrinsic generators |
|
|
178 | (3) |
|
B.2 Intrinsic and lab frame generators |
|
|
181 | (1) |
|
B.3 The partition function |
|
|
182 | (1) |
|
|
183 | (2) |
|
|
185 | (5) |
|
|
190 | (2) |
|
C.1 Gaussian transformations and Wick theorems |
|
|
190 | (2) |
References |
|
192 | (9) |
Index |
|
201 | |