Muutke küpsiste eelistusi

Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes 2019 ed. [Pehme köide]

  • Formaat: Paperback / softback, 322 pages, kõrgus x laius: 235x155 mm, kaal: 510 g, VIII, 322 p., 1 Paperback / softback
  • Sari: Operator Theory: Advances and Applications 274
  • Ilmumisaeg: 14-Aug-2020
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 303016411X
  • ISBN-13: 9783030164119
Teised raamatud teemal:
  • Pehme köide
  • Hind: 67,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 79,09 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 322 pages, kõrgus x laius: 235x155 mm, kaal: 510 g, VIII, 322 p., 1 Paperback / softback
  • Sari: Operator Theory: Advances and Applications 274
  • Ilmumisaeg: 14-Aug-2020
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 303016411X
  • ISBN-13: 9783030164119
Teised raamatud teemal:

This book presents a new theory for evolution operators and a new method for defining fractional powers of vector operators. This new approach allows to define new classes of fractional diffusion and evolution problems. 

These innovative methods and techniques, based on the concept of S-spectrum, can inspire researchers from various areas of operator theory and PDEs to explore new research directions in their fields.

This monograph is the natural continuation of the book: Spectral Theory on the S-Spectrum for Quaternionic Operators by Fabrizio Colombo, Jonathan Gantner, and David P. Kimsey  (Operator Theory: Advances and Applications, Vol. 270).


Introduction.- Preliminary results.- The direct approach to the
S-functional calculus.- The Quaternionic Evolution Operator.- Perturbations
of the generator of a group.- The Phillips-functional calculus.- The
H-Infinity -Functional Calculus.- Fractional powers of quaternionic linear
operators.- The fractional heat equation using quaternionic
techniques.-Applications to fractional diffusion- Historical notes and
References.- Appendix: Principles of functional Analysis.