Muutke küpsiste eelistusi

Radiation Detection for Nuclear Physics: Methods and industrial applications [Kõva köide]

(University of York)
  • Formaat: Hardback, kõrgus x laius x paksus: 254x178x19 mm, kaal: 756 g, With figures in colour and in black and white
  • Sari: IOP Series in Nuclear Spectroscopy and Nuclear Structure
  • Ilmumisaeg: 18-Nov-2020
  • Kirjastus: Institute of Physics Publishing
  • ISBN-10: 075031429X
  • ISBN-13: 9780750314299
Teised raamatud teemal:
  • Formaat: Hardback, kõrgus x laius x paksus: 254x178x19 mm, kaal: 756 g, With figures in colour and in black and white
  • Sari: IOP Series in Nuclear Spectroscopy and Nuclear Structure
  • Ilmumisaeg: 18-Nov-2020
  • Kirjastus: Institute of Physics Publishing
  • ISBN-10: 075031429X
  • ISBN-13: 9780750314299
Teised raamatud teemal:
Preface xii
Author biography xiv
Part I Theory and context
1 Nuclear Structure And Radioactive Decay
1(1)
1.1 Introduction to basic atomic and nuclear structure
1(6)
1.1.1 The atomic nucleus
2(2)
1.1.2 What drives nuclear stability?
4(1)
1.1.3 Liquid drop model
5(2)
1.1.4 Nuclear shell model
7(1)
1.2 Radioactive decay
7(2)
1.2.1 Basic definitions
7(2)
1.3 Alpha decay
9(3)
1.3.1 Fine structure in alpha decay
11(1)
1.3.2 Prompt proton emission
12(1)
1.3.3 Conclusions on alpha decay and implications for measurements
12(1)
1.4 Beta decay
12(6)
1.4.1 β- decay
13(2)
1.4.2 β+ decay
15(1)
1.4.3 Electron capture
15(1)
1.4.4 Fermi and Gamow-Teller decay
16(1)
1.4.5 Conclusions on beta decay and implications for measurements
16(2)
1.5 Fission
18(1)
1.5.1 Conclusions on fission and implications for measurements
19(1)
1.6 Excited states
19(5)
1.7 Transitions between nuclear excited states: electromagnetic decay modes
24(1)
1.7.1 Gamma decay
24(3)
1.7.2 Lifetime of nuclear excited states
27(1)
1.7.3 Internal conversion
28(2)
1.7.4 Conclusions on gamma decay and implications for measurements
30(1)
References
31
2 Interaction Of Ionising Radiation With Matter
1(1)
2.1 General remarks
1(1)
2.2 Protons, alpha particles and heavy ions
2(6)
2.2.1 Fundamentals of stopping power theory
2(2)
2.2.2 Low-velocity ions
4(1)
2.2.3 Range
4(1)
2.2.4 Bragg peak
4(1)
2.2.5 Straggling
5(1)
2.2.6 Channeling
5(1)
2.2.7 Delta electrons
6(1)
2.2.8 Simulation of energy loss, range and straggling
7(1)
2.3 Electrons and positrons
8(3)
2.3.1 Electrons
8(2)
2.3.2 Positrons
10(1)
2.3.3 Tools for evaluating electron/positron ranges
10(1)
2.3.4 Cherenkov radiation
10(1)
2.4 Gamma rays
11(7)
2.4.1 Photoelectric absorption
13(1)
2.4.2 Compton scattering
14(3)
2.4.3 Pair production
17(1)
2.5 Neutrons
18(1)
2.5.1 Fast neutrons
18(2)
2.5.2 Thermal neutrons
20(2)
References
22
3 Radioactive Sources In The Laboratory
1(1)
3.1 Radioactive sources
1(6)
3.1.1 Alpha sources
2(1)
3.1.2 Beta sources
2(1)
3.1.3 Gamma-ray sources
3(1)
3.1.4 Conversion-electron sources
4(1)
3.1.5 Neutron sources
5(2)
3.2 Laboratory methods for studying exotic nuclei, nuclear reactions and nuclear excited states
7(1)
3.3 Stable beam methods
8(3)
3.3.1 Fusion-evaporation reaction
8(3)
3.4 Radioactive beams
11(6)
3.4.1 In-flight technique
11(1)
3.4.2 ISOL technique
11(1)
3.4.3 Experimental techniques with low energy or stopped radioactive beams
12(1)
3.4.4 Experimental techniques with re-accelerated radioactive beams
13(1)
3.4.5 Coulomb excitation
14(1)
3.4.6 Single particle transfer
15(2)
3.5 Neutron-induced reaction studies
17(1)
3.5.1 Neutron time-of-flight measurements
17(2)
3.5.2 Fast neutron beams
19(1)
References
20
Part II Detectors
4 The Right Detector For The Job
1(1)
4.1 Considerations in designing a detector setup
1(12)
4.1.1 Energy resolution
3(4)
4.1.2 Timing resolution
7(2)
4.1.3 Counting rates
9(1)
4.1.4 Detector efficiency
10(1)
4.1.5 Angular coverage and detector geometry
11(1)
4.1.6 Dynamic range
12(1)
4.2 Detector design and modelling
13(2)
4.2.1 GEANT4
13(2)
4.2.2 MCNP
15(1)
4.3 Overview of major detector types
15(7)
4.3.1 Gas-filled detectors
15(2)
4.3.2 Scintillator detectors
17(3)
4.3.3 Semiconductor detectors
20(2)
4.4 Map of detector technologies to different applications
22(1)
4.4.1 Alpha particles
22(1)
4.4.2 Beta particles and conversion electrons
23(1)
4.4.3 Gamma rays
24(1)
4.4.4 Neutrons
25(1)
References
26
5 Scintillator Detectors For Gamma-Ray Detection
1(1)
5.1 Inorganic scintillator detectors
1(10)
5.1.1 Key parameters of scintillators
1(7)
5.1.2 Typical inorganic scintillators
8(3)
5.1.3 Phoswich detectors
11(1)
5.2 Recent advances in scintillator technology
11(5)
5.2.1 Next-generation scintillators available commercially
12(2)
5.2.2 Future prospects
14(2)
5.3 Photosensors for scintillation light collection
16(8)
5.3.1 Photomultiplier tubes
16(3)
5.3.2 Solid state light sensors: photodiodes
19(2)
5.3.3 Silicon photomultipliers
21(3)
5.3.4 Simulation of scintillators and SiPMs
24(1)
5.4 Scintillator detector arrays
24(1)
5.4.1 Total absorption spectrometers
24(2)
5.4.2 Next-generation scintillator arrays
26(2)
References
28
6 Semiconductor Detectors For Gamma-Ray Detection
1(1)
6.1 Germanium detectors--an overview
1(2)
6.2 Hyperpure germanium detectors
3(4)
6.2.1 Detector fabrication
3(1)
6.2.2 Depletion depth
4(1)
6.2.3 Principle of operation
5(1)
6.2.4 Pulse shapes
5(2)
6.3 Key parameters for germanium detectors
7(9)
6.3.1 Energy resolution
7(3)
6.3.2 Timing resolution
10(1)
6.3.3 Peak-to-total
11(1)
6.3.4 Linearity/calibration
12(1)
6.3.5 Efficiency
12(2)
6.3.6 Neutron damage
14(2)
6.4 Principal classes of germanium detector
16(7)
6.4.1 Types of hyperpure germanium detector
16(3)
6.4.2 Germanium detector arrays
19(4)
6.5 Improving germanium detector performance
23(7)
6.5.1 Compton suppression
23(1)
6.5.2 Gamma-ray tracking
24(6)
6.6 Room temperature semiconductor detectors for gamma rays
30(3)
References
33
7 Applications Of Gamma-Ray Detection For Society, Medicine And Other Areas Of Science
1(1)
7.1 Homeland security
2(4)
7.1.1 Dirty bomb detection
2(1)
7.1.2 Gamma-ray imaging
2(4)
7.2 Nuclear decommissioning
6(1)
7.3 Environmental monitoring
6(1)
7.4 Oil and gas, mineral exploration
7(1)
7.4.1 Sub-sea CT imaging
7(1)
7.4.2 Borehole logging
7(1)
7.5 Medical imaging
8(7)
7.5.1 PET
8(3)
7.5.2 SPECT
11(2)
7.5.3 Diagnostics for ion-beam therapy
13(2)
7.6 Gamma-ray astronomy
15(2)
7.6.1 Compton camera for gamma-ray astronomy
17(1)
References
17
8 Charged Particle Detection
1(1)
8.1 Alpha and heavy ion detection
1(6)
8.1.1 Counting charged particles
2(5)
8.2 Spectroscopy of charged particles: silicon detectors
7(19)
8.2.1 Fabrication and design of silicon detectors
8(2)
8.2.2 Identifying charged particles with silicon detectors
10(2)
8.2.3 Obtaining position sensitivity within silicon detectors
12(3)
8.2.4 Double-sided silicon strip detectors
15(5)
8.2.5 Specialist applications of silicon detectors--storage rings
20(3)
8.2.6 Operation and calibration of silicon detectors
23(2)
8.2.7 Alternatives to silicon
25(1)
8.3 Applications relevant to fission
26(11)
8.3.1 Counting fission events
27(1)
8.3.2 Identifying the fission fragment mass distribution
28(3)
8.3.3 Determining both A and Z of fission fragments
31(3)
8.3.4 Societal applications of alpha particle/heavy-ion detection
34(3)
8.4 ... and electron detection
37(1)
8.4.1 Beta decay spectroscopy
37(2)
8.4.2 Conversion electron spectroscopy
39(3)
8.4.3 Pair spectrometer
42(1)
8.4.4 Societal applications of beta detection
43(5)
References
48
9 Neutron Detectors
1(1)
9.1 Fast neutron detectors
1(11)
9.1.1 Liquid scintillator detectors
4(4)
9.1.2 Plastic scintillator detectors
8(3)
9.1.3 Emerging alternatives for fast neutron detection
11(1)
9.2 Thermal neutron detectors
12(5)
9.2.1 3He gas-filled proportional counter
12(2)
9.2.2 3He replacements
14(3)
9.3 Industrial and security applications of neutron detection
17(1)
9.3.1 Homeland security
17(2)
9.3.2 Borehole logging
19(1)
References
20
Part III Electronics and data analysis
10 Readout Electronics And Data Analysis
1(1)
10.1 Strategy for electronics readout of detectors
1(1)
10.2 Analogue electronics
2(12)
10.2.1 Charge-sensitive preamplifier and signal chain
4(2)
10.2.2 Pulse shaping amplifier
6(2)
10.2.3 Analogue-to-digital conversion
8(1)
10.2.4 Charge-to-digital-converter (QDC)
9(1)
10.2.5 Timing chain
9(2)
10.2.6 Concept of a trigger
11(1)
10.2.7 Compactified read-out systems: ASICs
11(1)
10.2.8 Dead time and pile-up
12(2)
10.3 Digital data acquisition
14(5)
10.3.1 Pulse processing
17(1)
10.3.2 Timestamping, rates and triggerless acquisition
17(2)
10.4 Data analysis
19(1)
10.4.1 ROOT
19(3)
10.4.2 Further selected examples of data analysis software
22(2)
References
24
11 Closing Remarks
1(1)
Appendix A 1