Muutke küpsiste eelistusi

Radio Systems Engineering [Kõva köide]

(Virginia Polytechnic Institute and State University)
  • Formaat: Hardback, 650 pages, kõrgus x laius x paksus: 252x195x32 mm, kaal: 1520 g, 29 Tables, black and white; 376 Line drawings, black and white
  • Ilmumisaeg: 06-Oct-2016
  • Kirjastus: Cambridge University Press
  • ISBN-10: 1107068282
  • ISBN-13: 9781107068285
Teised raamatud teemal:
  • Formaat: Hardback, 650 pages, kõrgus x laius x paksus: 252x195x32 mm, kaal: 1520 g, 29 Tables, black and white; 376 Line drawings, black and white
  • Ilmumisaeg: 06-Oct-2016
  • Kirjastus: Cambridge University Press
  • ISBN-10: 1107068282
  • ISBN-13: 9781107068285
Teised raamatud teemal:
Using a systems framework, this textbook provides a clear and comprehensive introduction to the performance, analysis and design of radio systems for students and practising engineers. Presented within a consistent framework, the first part of the book describes the fundamentals of the subject: propagation, noise, antennas and modulation. The analysis and design of radios, including RF circuit design and signal processing, is covered in the second half of the book. The former is presented with minimal involvement of Smith charts, enabling students to grasp the fundamentals more readily. Both traditional and software-defined/direct sampling technology are described, with pros and cons of each strategy explained. Numerous examples within the text involve realistic analysis and design activities, and emphasize how practical experiences may differ from theory or taught procedures. End-of-chapter problems are provided, as are a password-protected solutions manual and lecture slides to complete the teaching package for instructors.

Arvustused

'Radio Systems Engineering offers a comprehensive introduction to the architecture and components of radio systems. It reviews all the fundamentals that students need to understand today's wireless communication systems, including modern modulation schemes, radio wave propagation and noise impact. It also covers all the blocks of modern radio transmitter and receiver systems, such as antennas, filters, amplifiers, and signal processing. This textbook gives engineering students a complete overview of radio systems and provides practicing wireless engineers with a convenient comprehensive reference.' Patrick Roblin, Ohio State University

Muu info

Using a systems framework, this textbook clearly explains how individual elements contribute to the overall performance of a radio system.
List of illustrations
xviii
List of tables
xxxvii
Preface xxxix
1 Introduction
1(15)
1.1 Radio: What and Why
1(1)
1.2 The Radio Frequency Spectrum
2(2)
1.3 Radio Link Architecture
4(5)
1.4 Elements of a Radio Link
9(2)
1.5 Modern Radio Design: Levels of Integration
11(2)
1.6 Specifications in Modern Radio Design
13(1)
1.7 Organization of This Book
14(2)
Problems
15(1)
2 Antenna Fundamentals
16(44)
2.1 Introduction
16(1)
2.2 Creation of Radio Waves
16(9)
2.2.1 Physical Origins of Radiation
16(1)
2.2.2 Radiation from Linear Antennas; Far-Field Approximations
17(4)
2.2.3 Equivalent Circuit Model for Transmission
21(4)
2.2.4 The Impedance of Other Types of Antennas
25(1)
2.3 Reception of Radio Waves
25(3)
2.3.1 Equivalent Circuit Model for Reception; Effective Length
26(2)
2.3.2 Effective Aperture
28(1)
2.4 Pattern and Reciprocity
28(4)
2.4.1 Transmit Case
29(2)
2.4.2 Receive Case
31(1)
2.5 Polarization
32(1)
2.6 Antenna Integration
33(2)
2.6.1 Impedance Matching
33(2)
2.6.2 Current Mode Matching; Baluns
35(1)
2.7 Dipoles
35(8)
2.7.1 General Characteristics
35(2)
2.7.2 The Electrically-Thin Half-Wave Dipole
37(1)
2.7.3 Electrically-Thin Dipoles with λ/2 < L ≤ λ Off-Center-Fed Dipoles
38(1)
2.7.4 The Electrically-Thin 5/4-λ Dipole
39(1)
2.7.5 Equivalent Circuits and Numerical Methods for Straight Dipoles of Arbitrary Length and Radius
40(1)
2.7.6 Planar Dipoles; Dipoles on Printed Circuit Boards
41(1)
2.7.7 Other Dipole-Type Antennas
41(2)
2.8 Monopoles
43(3)
2.8.1 General Characteristics
43(1)
2.8.2 The Ideal Electrically-Thin Electrically-Short Monopole
44(1)
2.8.3 The Ideal Electrically-Thin Quarter-Wave Monopole
44(1)
2.8.4 The 5/8-λ Monopole
45(1)
2.8.5 Practical Monopoles
45(1)
2.9 Patch Antennas
46(2)
2.10 High-Gain Antennas
48(6)
2.10.1 Beam Antennas; The Yagi
49(2)
2.10.2 Reflectors
51(3)
2.11 Arrays
54(2)
2.12 Other Commonly-Encountered Antennas
56(4)
Problems
58(2)
3 Propagation
60(39)
3.1 Introduction
60(1)
3.2 Propagation in Free Space; Path Loss
60(3)
3.3 Reflection and Transmission
63(5)
3.3.1 Reflection from a Planar Interface
63(2)
3.3.2 Reflection from the Surface of the Earth
65(1)
3.3.3 Scattering from Terrain and Structures
66(2)
3.4 Propagation Over Flat Earth
68(5)
3.4.1 A General Expression for the Wave Arriving at the Receiving Antenna
68(3)
3.4.2 Flat Earth Path Loss; Breakpoint Analysis
71(2)
3.5 Multipath and Fading
73(14)
3.5.1 Discrete Multipath Model for Terrestrial Propagation
73(2)
3.5.2 The Static Channel: Channel Impulse Response
75(5)
3.5.3 The Dynamic Channel: Doppler Spread and Fading
80(4)
3.5.4 Spatial Autocorrelation and Diversity
84(2)
3.5.5 Summary
86(1)
3.6 Terrestrial Propagation Between 30 MHz and 6 GHz
87(4)
3.6.1 Radio Horizon
87(1)
3.6.2 Delay Spread and Coherence Bandwidth
88(1)
3.6.3 Fading Statistics and Coherence Time
89(1)
3.6.4 Average Path Loss
90(1)
3.7 Propagation Above 6 GHz
91(3)
3.7.1 Increased Path Loss Due to Diminished Effective Aperture
92(1)
3.7.2 Increased Path Loss Due to Media Losses: Attenuation Rate
93(1)
3.7.3 Atmospheric Absorption
93(1)
3.7.4 Rain Fade
94(1)
3.8 Terrestrial Propagation Below 30 MHz
94(2)
3.9 Other Mechanisms for Radio Propagation
96(3)
Problems
97(2)
4 Noise
99(15)
4.1 Introduction
99(1)
4.2 Thermal Noise
99(2)
4.3 Non-thermal Noise
101(2)
4.4 Noise Characterization of Two-Port Devices; Noise Figure
103(5)
4.4.1 Single Two-Port Devices
103(3)
4.4.2 Cascades of Two-Port Devices
106(2)
4.5 External Noise
108(6)
4.5.1 Antenna Temperature
108(1)
4.5.2 Natural Sources of Noise
109(2)
4.5.3 Anthropogenic Sources of Noise
111(2)
Problems
113(1)
5 Analog Modulation
114(25)
5.1 Introduction
114(1)
5.2 Sinusoidal Carrier Modulation
114(1)
5.3 Complex Baseband Representation
115(2)
5.4 ComplexBasebandRepresentationofNoi.se
117(1)
5.5 Amplitude Modulation (AM)
118(9)
5.5.1 Modulation and Spectrum
118(3)
5.5.2 Effect of Propagation
121(1)
5.5.3 Incoherent Demodulation
121(1)
5.5.4 Coherent Demodulation
122(3)
5.5.5 Sensitivity of Coherent and Incoherent Demodulation
125(2)
5.6 Single Sideband (SSB)
127(5)
5.6.1 Generation of SSB
127(3)
5.6.2 SSB as a Quadrature Modulation
130(1)
5.6.3 Demodulation and Performance of SSB
130(1)
5.6.4 Vestigial Sideband (VSB) Modulation
131(1)
5.6.5 Pilot-Assisted SSB and VSB
131(1)
5.7 Frequency Modulation (FM)
132(5)
5.7.1 Characterization of FM
132(3)
5.7.2 Generation of FM
135(1)
5.7.3 Demodulation
135(1)
5.7.4 Preemphasis
136(1)
5.7.5 Performance in Varying SNR; Threshold Effect
136(1)
5.8 Techniques for Improving Audio
137(2)
Problems
138(1)
6 Digital Modulation
139(64)
6.1 Introduction
139(2)
6.1.1 Overview of a Digital Communications Link and Organization of this
Chapter
139(1)
6.1.2 Motivation for Digital Modulation
140(1)
6.2 Source Coding
141(2)
6.3 Sinusoidal Carrier Modulation, Redux
143(2)
6.4 Pulse Shapes and Bandwidth
145(7)
6.4.1 Representation of Symbols as Pulses
146(1)
6.4.2 Sine Pulses and Intersymbol Interference
147(1)
6.4.3 Raised Cosine Pulses
148(3)
6.4.4 Spectral Efficiency
151(1)
6.5 Representations of Signal Power, Noise Power, and SNR in Digital Modulations
152(2)
6.5.1 Symbol Energy and Energy per Bit
152(1)
6.5.2 The Eb/N0 Concept
153(1)
6.6 Coherent Demodulation
154(3)
6.6.1 Optimal Demodulation
154(1)
6.6.2 Matched Filtering
155(1)
6.6.3 Square Root Raised Cosine (SRRC) Matched Filtering
155(1)
6.6.4 The Correlation Receiver
156(1)
6.7 Demodulation of BPSK and OOK
157(6)
6.7.1 Optimal Demodulation of BPSK
157(3)
6.7.2 Optimal Demodulation of OOK
160(2)
6.7.3 Incoherent Demodulation of OOK
162(1)
6.8 Demodulation of QPSK
163(1)
6.9 Demodulation of Higher-Order Phase-Amplitude Modulations
164(3)
6.9.1 M-ASK
164(1)
6.9.2 M-QAM
165(1)
6.9.3 M-PSK
166(1)
6.10 Differential Detection
167(3)
6.10.1 Concept
168(1)
6.10.2 Performance
169(1)
6.11 Frequency-Shift Keying (FSK)
170(4)
6.11.1 Concept
170(1)
6.11.2 Minimum-Shift Keying (MSK)
171(1)
6.11.3 Demodulation and Performance
172(2)
6.12 Tradeoff Between Spectral Efficiency and Energy Efficiency
174(3)
6.13 Channel Coding
177(2)
6.14 Communication in Channels with Flat Fading
179(6)
6.14.1 Probability of Error in Flat Fading
179(1)
6.14.2 Interleaving
180(1)
6.14.3 Space Diversity
181(3)
6.14.4 Multiple-Input Multiple-Output (MIMO)
184(1)
6.15 Communication in Channels with Intersymbol Interference
185(2)
6.15.1 Zero-Forcing Equalization
185(1)
6.15.2 Maximum Likelihood Sequence Estimation
185(1)
6.15.3 Minimum Mean Square Error (MMSE) Equalization
186(1)
6.16 Carrier Frequency, Phase, and Symbol Timing
187(4)
6.16.1 Carrier Frequency Estimation
188(1)
6.16.2 Carrier Phase Estimation
189(1)
6.16.3 Symbol Timing
189(2)
6.17 ATSC: The North American Digital Television Standard
191(4)
6.17.1 Transmitter
191(3)
6.17.2 Receiver
194(1)
6.18 Direct Sequence Spread Spectrum (DSSS) and Code Division Multiple Access (CDMA)
195(4)
6.18.1 Fundamentals
196(1)
6.18.2 Cellular CDMA
197(2)
6.19 Orthogonal Frequency Division Multiplexing
199(4)
6.19.1 Concept
199(1)
6.19.2 Implementation
200(1)
Problems
201(2)
7 Radio Link Analysis
203(26)
7.1 Introduction
203(1)
7.2 Friis Transmission Equation Revisited
203(2)
7.3 Effective Radiated Power (EIRP and ERP)
205(2)
7.4 Signal-to-Noise Ratio at the Input of a Detector
207(3)
7.5 Sensitivity and G/T
210(1)
7.6 Link Budget
211(3)
7.7 Analysis of a 6 GHz Wireless Backhaul; Link Margin
214(2)
7.8 Analysis of a PCS-Band Cellular Downlink
216(4)
7.9 Analysis of an HF-Band NVIS Data Link; Fade Margin
220(4)
7.10 Analysis of a Ku-Band Direct Broadcast Satellite System
224(2)
7.11 Specification of Radios and the Path Forward
226(3)
Problems
228(1)
8 Two-Port Concepts
229(30)
8.1 Introduction
229(1)
8.2 s-Parameters
230(5)
8.2.1 Derivation of s-Parameters
230(2)
8.2.2 s-Parameters for Series and Shunt Impedances
232(2)
8.2.3 s-Parameters for Transmission Lines
234(1)
8.2.4 s-Parameters for Other Two-Ports
235(1)
8.3 Intrinsic Properties of Two-Ports
235(3)
8.4 Properties of Embedded Two-Ports
238(4)
8.4.1 Reflection Coefficient for Embedded Two-Ports
238(1)
8.4.2 Transducer Power Gain (TPG)
239(3)
8.5 Stability and Gain
242(8)
8.5.1 Instability and Oscillation
242(1)
8.5.2 Determination of Stability
243(4)
8.5.3 Simultaneous Conjugate Matching
247(1)
8.5.4 Maximum Stable Gain
248(2)
8.6 Cascaded Two-Ports
250(3)
8.7 Differential Circuits
253(6)
8.7.1 Applications of Differential Circuits
254(2)
8.7.2 Interfaces between Differential and Single-Ended Circuits
256(1)
8.7.3 Analysis of Differential Circuits
257(1)
Problems
257(2)
9 Impedance Matching
259(26)
9.1 Introduction
259(1)
9.2 Some Preliminary Ideas
260(1)
9.3 Discrete Two-Component ("L") Matching
261(5)
9.4 Bandwidth and Q
266(2)
9.5 Modifying Bandwidth Using Higher-Order Circuits
268(6)
9.5.1 Increasing Bandwidth using Cascades of Two-Reactance Matching Circuits
268(3)
9.5.2 Decreasing Bandwidth Using "Pi" and "T" Circuits
271(2)
9.5.3 Other Considerations and Variants
273(1)
9.6 Impedance Matching for Differential Circuits
274(1)
9.7 Distributed Matching Structures
274(9)
9.7.1 Properties of Practical Transmission Lines
276(2)
9.7.2 Impedance of Single-Port Transmission Line Stubs
278(1)
9.7.3 Single-Stub Matching
278(4)
9.7.4 Quarter-Wave Matching
282(1)
9.8 Impedance Inversion
283(2)
Problems
283(2)
10 Amplifiers
285(53)
10.1 Introduction
285(1)
10.2 Transistors as Amplifiers
285(4)
10.2.1 Bipolar Transistors
285(3)
10.2.2 Field Effect Transistors
288(1)
10.2.3 Designing with Transistors
289(1)
10.3 Biasing of Transistor Amplifiers
289(12)
10.3.1 Bipolar Transistors
289(9)
10.3.2 FETs
298(3)
10.3.3 Beyond Common Emitter and Common Source
301(1)
10.4 Designing for Gain
301(13)
10.4.1 Bilateral Design to Meet a Gain Requirement
302(8)
10.4.2 Unilateral Design to Meet a Gain Requirement
310(3)
10.4.3 Taming Unruly Transistors: Unilateralization and Stabilization
313(1)
10.5 Designing for Noise Figure
314(5)
10.6 Designing for VSWR
319(1)
10.7 Design Example: A UHF-Band LNA
320(12)
10.7.1 Inductive Degeneration
321(1)
10.7.2 Selecting an Operating Point and Establishing RF Design Parameters
322(1)
10.7.3 Transistor Characterization
323(1)
10.7.4 Transistor Output Conditioning
324(1)
10.7.5 IMN Design
325(2)
10.7.6 OMN Design
327(1)
10.7.7 Bias Scheme
327(2)
10.7.8 Bias Circuit Integration
329(1)
10.7.9 Measured Results
330(2)
10.8 Beyond the Single-Transistor Narrowband Amplifier
332(1)
10.9 IC Implementation
333(5)
Problems
334(4)
11 Linearity, Multistage Analysis, and Dynamic Range
338(25)
11.1 Introduction
338(1)
11.2 Characterization of Linearity
338(11)
11.2.1 Linearity as Independence of Response
339(1)
11.2.2 Linearity of Systems with Memoryless Polynomial Response
340(2)
11.2.3 Gain Compression
342(1)
11.2.4 Intermodulation; Third-Order Intermodulation
343(4)
11.2.5 Second-Order Intermodulation
347(1)
11.2.6 AM--PM Conversion
348(1)
11.3 Linearity of Differential Devices
349(1)
11.4 Linearity of Cascaded Devices
350(2)
11.5 Stage/Cascade Analysis; Significance of Stage Order
352(3)
11.6 Other Common Characterizations of Sensitivity
355(4)
11.6.1 Minimum Discernible Signal (MDS): Concept and Zero-Input-Noise Expressions
355(1)
11.6.2 Minimum Discernible Signal (MDS): Non-Zero-Input-Noise Expressions
356(2)
11.6.3 Noise Floor
358(1)
11.7 Dynamic Range
359(4)
Problems
362(1)
12 Antenna Integration
363(34)
12.1 Introduction
363(1)
12.2 Receive Performance
363(12)
12.2.1 Antenna Receive Model, Revisited
364(5)
12.2.2 Signal Power Delivered by an Antenna to a Receiver
369(2)
12.2.3 SNR Delivered to the Digitizer or Detector Assuming Conjugate Matching
371(2)
12.2.4 SNR Delivered to the Digitizer or Detector when Two-Port Noise Parameters are Available
373(2)
12.3 Transmit Performance
375(5)
12.3.1 VSWR
375(2)
12.3.2 Transmit Efficiency
377(3)
12.4 Antenna-Transceiver Impedance Matching
380(6)
12.4.1 Fractional Bandwidth Concept
380(1)
12.4.2 Resonant Antennas
381(1)
12.4.3 Non-Resonant Broadband Antennas
381(1)
12.4.4 Electrically-Small Antennas
382(4)
12.5 How Small Can an Antenna Be?
386(3)
12.6 Antenna Tuners
389(1)
12.7 Baluns
390(7)
12.7.1 Consequences of Not Using a Balun
391(1)
12.7.2 Balun Contraindications
391(1)
12.7.3 Compact Baluns
392(1)
12.7.4 Coaxial Choke Baluns
392(2)
12.7.5 Other Commonly-Used Balun Types
394(2)
Problems
396(1)
13 Analog Filters and Multiplexers
397(32)
13.1 Introduction
397(1)
13.2 Characterization of Filter Response
397(2)
13.3 Single-Reactance Lowpass and Highpass Filters
399(1)
13.4 Single-Resonator Bandpass and Notch Filters
400(2)
13.5 Discrete (LC) Filters -- Specified Response
402(13)
13.5.1 Butterworth Lowpass Filter Design
404(1)
13.5.2 Butterworth Highpass Filter Design
405(2)
13.5.3 Butterworth Bandpass Filter Design
407(2)
13.5.4 Butterworth Bandstop Filter Design
409(1)
13.5.5 Chebyshev Filter Design
410(2)
13.5.6 Phase and Delay Response; Group Delay Variation
412(2)
13.5.7 Other Specified-Response Designs and Topological Variants
414(1)
13.6 Diplexers and Multiplexers
415(3)
13.7 Distributed Filter Structures
418(6)
13.7.1 Transmission Line Stubs as Single-Reactance Two-Ports
418(2)
13.7.2 Quarter-Wave Stubs as Single-Resonance Two-Ports
420(1)
13.7.3 Filters Composed of Quarter-Wave Sections
420(4)
13.7.4 Specified-Response Filters Using Transmission Line Stubs
424(1)
13.8 Other Filter Device Technologies
424(5)
13.8.1 Coupled Resonator and Stepped Impedance Filters
424(1)
13.8.2 Helical Filters
425(1)
13.8.3 Coaxial Filters
425(1)
13.8.4 Crystal Filters
426(1)
13.8.5 Surface Acoustic Wave Devices and Dielectric Resonators
427(1)
13.8.6 Mechanical and Ceramic Filters
427(1)
13.8.7 Electronically-Tunable Filters
427(1)
Problems
427(2)
14 Frequency and Quadrature Conversion in the Analog Domain
429(17)
14.1 Introduction
429(1)
14.2 Frequency Conversion
429(4)
14.2.1 Downconversion; Low- and High-Side Injection
430(1)
14.2.2 Upconversion
431(1)
14.2.3 Image Frequency
432(1)
14.3 Mixers
433(7)
14.3.1 Square-Law Processing
433(2)
14.3.2 Phase-Switching
435(1)
14.3.3 Double-Balanced Diode Ring Mixers
436(2)
14.3.4 IC Implementation
438(2)
14.4 Quadrature Conversion
440(2)
14.5 Image Rejection Mixers
442(4)
14.5.1 Hartley Architecture
442(2)
14.5.2 Weaver Architecture
444(1)
Problems
444(2)
15 Receivers
446(40)
15.1 Introduction
446(1)
15.2 Analog-to-Digital Conversion
446(13)
15.2.1 Method of Operation
447(1)
15.2.2 Sample Rate and Bandwidth
448(3)
15.2.3 Quantization Noise
451(6)
15.2.4 Characteristics of Practical ADCs
457(2)
15.3 Requirements on Gain and Sensitivity
459(3)
15.4 Preselection
462(3)
15.5 Selectivity
465(1)
15.6 Receiver Architectures
465(12)
15.6.1 Lowpass Direct Sampling
465(1)
15.6.2 Undersampling
466(2)
15.6.3 Tuned RF
468(1)
15.6.4 Single-Conversion Superheterodyne Architecture
468(2)
15.6.5 The Half-IF Problem
470(1)
15.6.6 Multiple-Conversion Superheterodyne Architecture
471(2)
15.6.7 Other Superheterodyne Architectures
473(2)
15.6.8 Direct Conversion
475(1)
15.6.9 Near-Zero IF
476(1)
15.6.10 Superheterodyne Architecture with Quadrature-Conversion Final Stage
476(1)
15.7 Frequency Planning
477(1)
15.8 Gain Control
478(3)
15.8.1 AGC Strategy for a Single-Channel-Output Receivers
478(1)
15.8.2 AGC Strategy for Multiple-Channel-Output Receivers
479(1)
15.8.3 AGC Strategy for Cellular CDMA Receivers
479(1)
15.8.4 Power Measurement for AGC
480(1)
15.8.5 Schemes for Varying Gain
480(1)
15.9 Case Studies
481(5)
15.9.1 AM/FM Broadcast Receivers
482(1)
15.9.2 Television Tuners
482(1)
15.9.3 HF Receivers
483(1)
15.9.4 Cellular, WLAN, and Global Navigation Satellite Systems (GNSS) Receivers
483(1)
15.9.5 Quadrature Conversion RF/IF Receivers
484(1)
Problems
484(2)
16 Frequency Synthesis
486(30)
16.1 Introduction
486(1)
16.2 LC Feedback Oscillators
486(4)
16.2.1 The LC Resonator
486(2)
16.2.2 Sustaining Resonance Using Feedback
488(2)
16.3 Design of LC Feedback Oscillators
490(10)
16.3.1 Colpitts Topology
491(1)
16.3.2 Analysis and Design of the Grounded Base Colpitts Oscillator
492(7)
16.3.3 Alternative Implementations and Enhancements
499(1)
16.4 Phase Noise, Spurious, and Reciprocal Mixing
500(3)
16.5 Oscillators Using Crystals and Other High-Q Resonators
503(3)
16.5.1 Crystal Oscillators
504(1)
16.5.2 Temperature-Stabilized Crystal Oscillators
505(1)
16.5.3 Resonator Technologies for Higher Frequencies
506(1)
16.6 Variable-Frequency Oscillators and VCOs
506(1)
16.7 Negative Resistance Oscillators
507(1)
16.8 Phase-Locked Loop (PLL) Synthesizers
507(4)
16.8.1 Integer-N Synthesizers
508(1)
16.8.2 Fractional-N Synthesizers
509(1)
16.8.3 Dividers, Phase Comparators, Loop Filters, and Prescalers
509(2)
16.8.4 PLL Design Considerations
511(1)
16.9 Direct Digital Synthesis
511(2)
16.10 IC Implementation of Oscillators and Synthesizers
513(3)
Problems
515(1)
17 Transmitters
516(34)
17.1 Introduction
516(1)
17.2 Architectures
516(2)
17.3 Digital-to-Analog Conversion
518(5)
17.3.1 Method of Operation
518(2)
17.3.2 Sample Rate, Bandwidth, and sine Distortion
520(3)
17.3.3 Quantization Noise and Dynamic Range
523(1)
17.4 Power Amplifiers
523(15)
17.4.1 Efficiency vs. Linearity
523(3)
17.4.2 Class A; Linear vs. Quasi-Linear Operation
526(3)
17.4.3 Harmonic Filtering
529(1)
17.4.4 Class B
530(3)
17.4.5 Class AB and Conduction Angle
533(1)
17.4.6 Class C
534(1)
17.4.7 The Rest of the Alphabet: High-Efficiency Non-linear PAs
535(2)
17.4.8 Repurposing Non-Linear PAs as Quasi-Linear PAs
537(1)
17.5 Considerations in PA Design
538(3)
17.5.1 Supply Voltage
538(1)
17.5.2 Load Impedance Matching
538(1)
17.5.3 Source Impedance Matching, Buffers, and Drivers
539(1)
17.5.4 PAPR and Back Off
540(1)
17.5.5 Power Control
540(1)
17.6 PA Linearization
541(5)
17.6.1 Consequences of PA Non-Linearity
541(1)
17.6.2 Predistortion
542(1)
17.6.3 Feedforward Linearization
543(1)
17.6.4 Feedback Linearization
544(2)
17.7 Quadrature-Coupled and Parallelized Amplifiers
546(4)
17.7.1 Quadrature Hybrids
546(2)
17.7.2 Combining Using Transformers
548(1)
Problems
549(1)
18 Digital Implementation of Radio Functions
550(28)
18.1 Introduction
550(1)
18.2 Single-Rate Filters
550(10)
18.2.1 FIR Filter Fundamentals
551(4)
18.2.2 FIR Filter Design Using Windows; The Kaiser Method
555(3)
18.2.3 Other Methods for FIR Filter Design and Applications
558(1)
18.2.4 Digital Filters with Butterworth, Chebyshev, and Elliptic Responses
559(1)
18.2.5 Reducing Computational Burden
559(1)
18.3 Multirate Filters
560(4)
18.3.1 Integer-Rate Decimating FIR Filters
561(1)
18.3.2 Integer-Rate Interpolating FIR Filters
562(1)
18.3.3 Non-Integer and Large-R Techniques
563(1)
18.4 Quadrature Upconversion and Downconversion
564(8)
18.4.1 Fs/4 Quadrature Downconversion
564(4)
18.4.2 Fs/4 Quadrature Upconversion
568(1)
18.4.3 Multirate Quadrature Downconversion From Other IFs
568(4)
18.5 Applications in Digital Modulation
572(2)
18.5.1 Pulse Shaping
572(1)
18.5.2 Symbol Timing Recovery
572(2)
18.5.3 Adaptive Equalization
574(1)
18.5.4 Carrier Frequency Tracking
574(1)
18.6 DSP Hardware Technologies
574(4)
18.6.1 CPUs, Their Limitations, and Alternatives
574(1)
18.6.2 Special-Function ICs
575(1)
18.6.3 FPGAs
575(1)
18.6.4 ASICs
576(1)
Problems
576(2)
Appendix A Empirical Modeling of Mean Path Loss
578(5)
A.1 Log-Linear Model for Mean Path Loss
578(2)
A.2 Hata Model
580(2)
A.3 COST231-Hata Model
582(1)
A.4 Other Models
582(1)
Appendix B Characteristics of Some Common Radio Systems
583(13)
B.1 Broadcasting
583(2)
B.2 Land Mobile Radio
585(1)
B.3 Mobile Telecommunications
586(3)
B.3.1 General Characteristics
586(1)
B.3.2 First-, Second-, and Third-Generation Cellular Systems
587(1)
B.3.3 Fourth-Generation Cellular Systems ("4G") and LTE
588(1)
B.3.4 Fifth-Generation Cellular Systems ("5G")
588(1)
B.4 Wireless Data Networks
589(2)
B.4.1 IEEE 802.11 and 802.11b
589(1)
B.4.2 IEEE 802.11a, -g, and -n
590(1)
B.4.3 IEEE 802.11ac and -ad
590(1)
B.4.4 Longer-Range Systems: IEEE 802.16 (WiMAX) and 802.11af (TVWS)
591(1)
B.4.5 Future Trends
591(1)
B.5 Short-Range Data Communications
591(2)
B.5.1 Bluetooth
592(1)
B.5.2 ZigBee
592(1)
B.5.3 Automotive Applications: RKE and TPMS
592(1)
B.6 Radio Frequency Identification (RFID)
593(1)
B.7 Global Navigation Satellite Systems (GNSS)
594(1)
B.8 Radar, Remote Sensing, and Radio Astronomy
595(1)
References 596(4)
Index 600
Steven W. Ellingson is an Associate Professor at Virginia Tech. He received his PhD in Electrical Engineering from Ohio State University. He held senior engineering positions at Booz-Allen and Hamilton, Raytheon, and the Ohio State University ElectroScience Laboratory before joining the faculty of Virginia Tech. His research focuses on wireless communications and radio frequency instrumentation, with funding from the National Science Foundation, the National Aeronautics and Space Administration, the Defense Advanced Research Projects Agency, and the commercial communications and aerospace industries. Dr Ellingson serves as a consultant to industry and government on topics pertaining to RF system design, and is an avid amateur radio operator.