|
|
1 | (3) |
|
|
1 | (3) |
|
|
4 | (8) |
|
2.1 The Philosopher and the Gambler |
|
|
4 | (4) |
|
|
8 | (3) |
|
|
11 | (1) |
|
3 Introduction to Stochastic Processes |
|
|
12 | (95) |
|
|
12 | (13) |
|
|
25 | (6) |
|
3.3 Predicting the future |
|
|
31 | (29) |
|
3.4 Continuous-time Markov chain |
|
|
60 | (26) |
|
|
86 | (19) |
|
|
105 | (2) |
|
|
107 | (33) |
|
|
108 | (2) |
|
4.2 Poisson process from counting process |
|
|
110 | (1) |
|
4.3 Poisson process from Bernoulli process |
|
|
111 | (9) |
|
4.4 Poisson process through the inter-arrival time |
|
|
120 | (1) |
|
4.5 Poisson processes simulations |
|
|
121 | (14) |
|
4.6 Nonhomogeneous Poisson process |
|
|
135 | (4) |
|
|
139 | (1) |
|
|
140 | (47) |
|
5.1 Definitions and examples |
|
|
140 | (33) |
|
5.2 Some topics on Brownian motion |
|
|
173 | (11) |
|
|
184 | (3) |
|
|
187 | (45) |
|
6.1 White noise and other useful definitions |
|
|
187 | (4) |
|
6.2 Moving-average processes |
|
|
191 | (5) |
|
6.3 Autoregressive processes |
|
|
196 | (8) |
|
6.4 Autoregressive moving-average processes (ARMA) |
|
|
204 | (4) |
|
6.5 An introduction to non stationary and seasonal time series |
|
|
208 | (9) |
|
6.6 A physical application |
|
|
217 | (11) |
|
|
228 | (4) |
|
|
232 | (37) |
|
7.1 Spectrum of stochastic signals |
|
|
237 | (9) |
|
|
246 | (3) |
|
7.3 Applications of spectrum analysis |
|
|
249 | (4) |
|
7.4 Singular Spectrum Analysis |
|
|
253 | (12) |
|
|
265 | (4) |
|
8 Markov Chain Monte Carlo |
|
|
269 | (25) |
|
8.1 Mother Nature's minimization algorithm |
|
|
269 | (2) |
|
8.2 From physical birth to statistical development |
|
|
271 | (13) |
|
8.3 The travelling salesman problem |
|
|
284 | (8) |
|
|
292 | (2) |
|
9 Bayesian Inference and Stochastic Processes |
|
|
294 | (41) |
|
9.1 Application of MCMC in a regression problem with auto-correlated errors |
|
|
297 | (12) |
|
9.2 Bayesian spectral analysis applied to RADAR target detection |
|
|
309 | (12) |
|
9.3 Bayesian analysis of a Poisson process: the waiting-time paradox |
|
|
321 | (5) |
|
9.4 Bayesian analysis applied to a lighthouse |
|
|
326 | (6) |
|
|
332 | (3) |
|
10 Genetic algorithms: an evolutionary-based global random search |
|
|
335 | (40) |
|
|
335 | (1) |
|
10.2 Terminology and basics of GA |
|
|
336 | (3) |
|
10.3 Simple genetic algorithm |
|
|
339 | (10) |
|
10.4 A simple application: non linear fitting |
|
|
349 | (8) |
|
10.5 Advanced genetic algorithms |
|
|
357 | (4) |
|
10.6 Parameter estimation of ARMA models |
|
|
361 | (6) |
|
10.7 Solving the travelling salesman problem |
|
|
367 | (6) |
|
|
373 | (1) |
|
|
373 | (2) |
|
11 The Problem of Accuracy |
|
|
375 | (27) |
|
|
375 | (1) |
|
11.2 Averaging time series |
|
|
376 | (5) |
|
11.3 The batch means method |
|
|
381 | (6) |
|
11.4 The moving block bootstrap method |
|
|
387 | (9) |
|
11.5 Convergence diagnostic with the MBB method |
|
|
396 | (4) |
|
|
400 | (2) |
|
|
402 | (44) |
|
12.1 Geostatistical perspective |
|
|
402 | (4) |
|
12.2 Correlation coefficient and correlogram |
|
|
406 | (7) |
|
|
413 | (17) |
|
|
430 | (9) |
|
12.5 On the optimization of the spatio-temporal variogram |
|
|
439 | (5) |
|
|
444 | (2) |
|
13 How Random is a Random Process? |
|
|
446 | (21) |
|
13.1 Random hints about randomness |
|
|
446 | (2) |
|
13.2 Characterizing mathematical randomness |
|
|
448 | (6) |
|
|
454 | (11) |
|
|
465 | (2) |
|
|
467 | (9) |
|
A.1 Bootstrap standard error |
|
|
469 | (3) |
|
|
472 | (4) |
|
|
476 | (7) |
List of Symbols |
|
483 | (2) |
List of R Codes |
|
485 | (3) |
References |
|
488 | (10) |
Index |
|
498 | |