|
|
1 | (6) |
|
I Toolbox for random tensors |
|
|
7 | (136) |
|
|
9 | (18) |
|
|
9 | (3) |
|
|
12 | (8) |
|
2.2.1 Edge colored graphs |
|
|
14 | (3) |
|
|
17 | (3) |
|
2.3 Connected and disconnected trace invariants |
|
|
20 | (2) |
|
2.4 Uniqueness of the decomposition on traceinvariants |
|
|
22 | (2) |
|
2.5 Invariant probability measures |
|
|
24 | (3) |
|
3 Generalities on edge colored graphs |
|
|
27 | (22) |
|
3.1 Faces, bubbles and the D-complex |
|
|
27 | (2) |
|
3.2 The dual triangulation |
|
|
29 | (4) |
|
3.3 Open graphs and the boundary graph |
|
|
33 | (10) |
|
3.3.1 The contraction of edges of color 0 |
|
|
37 | (4) |
|
3.3.2 The composition of D-colored graphs |
|
|
41 | (2) |
|
3.4 Combinatorial maps and D-colored graphs |
|
|
43 | (6) |
|
3.4.1 Jackets of colored graphs |
|
|
44 | (1) |
|
|
45 | (4) |
|
4 The classification of edge colored graphs |
|
|
49 | (40) |
|
|
49 | (6) |
|
|
55 | (4) |
|
|
59 | (4) |
|
4.3.1 Classification of chains |
|
|
61 | (2) |
|
|
63 | (3) |
|
4.5 Schemes of fixed degree |
|
|
66 | (15) |
|
4.5.1 Proof of Proposition 4.1 |
|
|
67 | (12) |
|
4.5.2 Proof of Proposition 4.2 |
|
|
79 | (2) |
|
|
81 | (8) |
|
4.6.1 Melonic graphs and cores |
|
|
81 | (1) |
|
4.6.2 Chains of (D -- 1)-dipoles and schemes |
|
|
82 | (4) |
|
4.6.3 The enumeration of rooted colored graph of fixed degree |
|
|
86 | (3) |
|
|
89 | (30) |
|
5.1 Quartic melonic graphs |
|
|
90 | (2) |
|
5.2 Melonic graphs and colored, rooted, (D + 1)-ary trees |
|
|
92 | (2) |
|
|
94 | (1) |
|
5.4 Random melons and branched polymers |
|
|
95 | (24) |
|
5.4.1 The Hausdorff dimension |
|
|
97 | (10) |
|
5.4.2 The spectral dimension |
|
|
107 | (12) |
|
6 The universality theorem |
|
|
119 | (24) |
|
|
120 | (6) |
|
6.1.1 Gaussian distribution of a random matrix |
|
|
120 | (3) |
|
6.1.2 Invariant probability measures for random matrices |
|
|
123 | (3) |
|
6.2 Gaussian distribution for tensors |
|
|
126 | (6) |
|
6.2.1 Uniqueness of the normalization |
|
|
130 | (2) |
|
6.3 Trace invariant tensor measures |
|
|
132 | (11) |
|
6.3.1 Universality for random tensors |
|
|
135 | (4) |
|
6.3.2 Nonuniform scalings |
|
|
139 | (4) |
|
|
143 | (144) |
|
7 A digest of matrix models |
|
|
145 | (10) |
|
7.1 Invariant matrix models |
|
|
145 | (1) |
|
7.2 The 1/N expansion and the large N limit |
|
|
146 | (6) |
|
7.2.1 The Feynman expansion |
|
|
146 | (3) |
|
|
149 | (1) |
|
7.2.3 The continuum limit |
|
|
150 | (2) |
|
7.3 The Schwinger-Dyson equations |
|
|
152 | (3) |
|
7.3.1 Graphical interpretation |
|
|
152 | (1) |
|
7.3.2 Algebra of constraints |
|
|
153 | (2) |
|
8 The perturbative expansion of tensor models |
|
|
155 | (20) |
|
8.1 Invariant probability measures revisited |
|
|
155 | (1) |
|
8.2 The 1/N expansion of tensor models |
|
|
156 | (4) |
|
8.2.1 The expectations of invariants |
|
|
159 | (1) |
|
8.3 Proper uniform boundedness |
|
|
160 | (3) |
|
8.3.1 Feynman graphs for cumulants |
|
|
160 | (2) |
|
8.3.2 Perturbative bounds |
|
|
162 | (1) |
|
|
163 | (3) |
|
|
166 | (2) |
|
8.6 The algebra of constraints |
|
|
168 | (7) |
|
8.6.1 A Lie Algebra Indexed by Observables |
|
|
168 | (2) |
|
8.6.2 Schwinger-Dyson equations |
|
|
170 | (5) |
|
9 The quartic tensor model |
|
|
175 | (50) |
|
|
175 | (3) |
|
|
176 | (2) |
|
9.2 Edge multicolored maps |
|
|
178 | (13) |
|
9.2.1 Maps with p and r edges |
|
|
183 | (8) |
|
9.3 The intermediate field representation |
|
|
191 | (7) |
|
9.3.1 Feynman graphs for the intermediate field |
|
|
193 | (2) |
|
9.3.2 The perturbative 1/N expansion |
|
|
195 | (1) |
|
9.3.3 Perturbative uniform boundedness |
|
|
196 | (2) |
|
9.4 The constructive expansions |
|
|
198 | (9) |
|
9.4.1 The loop vertex expansion |
|
|
198 | (6) |
|
9.4.2 The mixed expansion |
|
|
204 | (3) |
|
9.5 Non perturbative tensor models |
|
|
207 | (18) |
|
|
207 | (10) |
|
9.5.2 Summary of non perturbative results |
|
|
217 | (3) |
|
9.5.3 The generic quartic model |
|
|
220 | (5) |
|
10 The double scaling limit |
|
|
225 | (38) |
|
10.1 The continuum limit as a phase transition |
|
|
225 | (2) |
|
10.2 The melonic phase revisited |
|
|
227 | (21) |
|
10.2.1 Translating the intermediate field |
|
|
230 | (4) |
|
|
234 | (8) |
|
10.2.3 Translating to the vacuum |
|
|
242 | (2) |
|
10.2.4 The 1/N expansion for the fluctuation field |
|
|
244 | (2) |
|
10.2.5 The first nontrivial order |
|
|
246 | (2) |
|
|
248 | (15) |
|
10.3.1 Enhancement at criticality |
|
|
248 | (1) |
|
10.3.2 Maximal number of broken edges |
|
|
249 | (1) |
|
|
250 | (6) |
|
10.3.4 Critical dimension |
|
|
256 | (1) |
|
10.3.5 Explicit computations |
|
|
257 | (6) |
|
|
263 | (16) |
|
11.1 The melonic model with only one interaction |
|
|
264 | (3) |
|
11.2 Integrating out the massless modes |
|
|
267 | (2) |
|
11.2.1 Block diagonalization |
|
|
267 | (1) |
|
|
267 | (2) |
|
11.3 The effective theory |
|
|
269 | (4) |
|
|
270 | (3) |
|
11.4 The phases of the model and their geometry |
|
|
273 | (6) |
|
11.4.1 The matrix case D = 2 |
|
|
274 | (1) |
|
11.4.2 The tensor case D ≥ 3 |
|
|
275 | (4) |
|
|
279 | (8) |
|
|
287 | (32) |
|
A The Weingarten functions revisited |
|
|
289 | (6) |
|
|
290 | (2) |
|
A.2 Schwinger--Dyson equations |
|
|
292 | (3) |
|
|
295 | (12) |
|
|
296 | (2) |
|
|
298 | (1) |
|
B.1.2 Properties of the Gaussian measure |
|
|
299 | (2) |
|
B.2 Perturbed Gaussian measures |
|
|
301 | (1) |
|
B.2.1 Quadratic perturbation |
|
|
302 | (1) |
|
B.2.2 Generic perturbation |
|
|
303 | (4) |
|
|
307 | (4) |
|
|
311 | (8) |
|
D.1 The forest formula and the connected moments |
|
|
315 | (1) |
|
|
316 | (3) |
Bibliography |
|
319 | (12) |
Index |
|
331 | |