Muutke küpsiste eelistusi

Reasoning of Quantum Mechanics: Operator Theory and the Harmonic Oscillator 2022 ed. [Kõva köide]

  • Formaat: Hardback, 80 pages, kõrgus x laius: 240x168 mm, kaal: 340 g, 4 Illustrations, color; 6 Illustrations, black and white; VII, 80 p. 10 illus., 4 illus. in color., 1 Hardback
  • Sari: Synthesis Lectures on Engineering, Science, and Technology
  • Ilmumisaeg: 30-Nov-2022
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031171764
  • ISBN-13: 9783031171765
  • Kõva köide
  • Hind: 41,28 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 80 pages, kõrgus x laius: 240x168 mm, kaal: 340 g, 4 Illustrations, color; 6 Illustrations, black and white; VII, 80 p. 10 illus., 4 illus. in color., 1 Hardback
  • Sari: Synthesis Lectures on Engineering, Science, and Technology
  • Ilmumisaeg: 30-Nov-2022
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031171764
  • ISBN-13: 9783031171765
This book presents and details the process of quantization of a classical mechanical system in a relevant physical system, the harmonic oscillator.  In quantum field theory or general relativity, mathematics and physics are inextricably interwoven.  As such, the book is mathematically rigorous.  The author focuses on the properties of the quantum system that can be observed and measured and interprets the resulting theory.  The methods of operator theory are discussed throughout in the formulation of the theory as well as in the calculation of the consequences of the theory.  The book addresses the mathematical support of the probabilistic interpretation of quantum mechanics through the spectral theorems for (densely-defined and linear) self-adjoint operators in Hilbert spaces.  Considerable focus is placed on the measurement process and questions the challenges of the wave function, the EPR paradox, and Bell’s inequality.
Introduction.- The Classical Mechanical System.- The Corresponding
Quantum System.- Appendix.
Horst R. Beyer, Ph.D., is affiliated with the University of Tuebingen in Germany.  Dr. Beyer has written numerous published articles in his areas of research interest, which include mathematical physics, in particular the applications of operator theory in quantum field theory, general relativity, astrophysics, and the engineering sciences.