List of Tables |
|
ix | |
List of Figures |
|
xiii | |
About the Editors |
|
xvii | |
Contributors |
|
xix | |
Foreword |
|
xxi | |
Chapter 1 Introduction |
|
1 | (6) |
|
|
1 | (1) |
|
1.2 The Content and Organization of This Book |
|
|
1 | (4) |
|
1.3 The Audience for This Book |
|
|
5 | (1) |
|
|
5 | (2) |
Chapter 2 News Search Ranking |
|
7 | (36) |
|
2.1 The Learning-to-Rank Approach |
|
|
7 | (3) |
|
|
8 | (1) |
|
2.1.2 Combine Relevance and Freshness |
|
|
8 | (2) |
|
2.2 Joint Learning Approach from Clickthroughs |
|
|
10 | (17) |
|
2.2.1 Joint Relevance and Freshness Learning |
|
|
12 | (2) |
|
|
14 | (3) |
|
|
17 | (2) |
|
|
19 | (5) |
|
2.2.5 Ranking Performance |
|
|
24 | (3) |
|
|
27 | (15) |
|
2.3.1 Architecture of the System |
|
|
29 | (1) |
|
|
30 | (3) |
|
2.3.3 Incremental Clustering |
|
|
33 | (1) |
|
2.3.4 Real-Time Clustering |
|
|
34 | (3) |
|
|
37 | (5) |
|
|
42 | (1) |
Chapter 3 Medical Domain Search Ranking |
|
43 | (16) |
|
|
43 | (1) |
|
3.1 Search Engines for Electronic Health Records |
|
|
44 | (3) |
|
3.2 Search Behavior Analysis |
|
|
47 | (2) |
|
|
49 | (5) |
|
3.3.1 Insights from the TREC Medical Record Track |
|
|
50 | (2) |
|
3.3.2 Implementing and Evaluating Relevance Ranking in EHR Search Engines |
|
|
52 | (2) |
|
|
54 | (3) |
|
|
57 | (2) |
Chapter 4 Visual Search Ranking |
|
59 | (22) |
|
|
59 | (1) |
|
4.1 Generic Visual Search System |
|
|
60 | (1) |
|
4.2 Text-Based Search Ranking |
|
|
61 | (3) |
|
|
61 | (1) |
|
4.2.2 Textual Query Preprocessing |
|
|
62 | (1) |
|
|
63 | (1) |
|
4.3 Query Example-Based Search Ranking |
|
|
64 | (4) |
|
4.3.1 Low-Level Visual Features |
|
|
64 | (1) |
|
|
65 | (3) |
|
4.4 Concept-Based Search Ranking |
|
|
68 | (3) |
|
4.4.1 Query-Concept Mapping |
|
|
68 | (2) |
|
4.4.2 Search with Related Concepts |
|
|
70 | (1) |
|
4.5 Visual Search Reranking |
|
|
71 | (5) |
|
4.5.1 First Paradigm: Self-Reranking |
|
|
71 | (2) |
|
4.5.2 Second Paradigm: Example-Based Reranking |
|
|
73 | (1) |
|
4.5.3 Third Paradigm: Crowd Reranking |
|
|
74 | (1) |
|
4.5.4 Fourth Paradigm: Interactive Reranking |
|
|
75 | (1) |
|
4.6 Learning and Search Ranking |
|
|
76 | (4) |
|
4.6.1 Ranking by Classification |
|
|
76 | (1) |
|
4.6.2 Classification vs. Ranking |
|
|
77 | (1) |
|
|
78 | (2) |
|
4.7 Conclusions and Future Challenges |
|
|
80 | (1) |
Chapter 5 Mobile Search Ranking |
|
81 | (26) |
|
|
81 | (2) |
|
|
83 | (4) |
|
|
84 | (1) |
|
5.1.2 Customer Reviews and Ratings |
|
|
84 | (1) |
|
5.1.3 Personal Preference |
|
|
85 | (1) |
|
5.1.4 Search Context: Location, Time, and Social Factors |
|
|
85 | (2) |
|
|
87 | (17) |
|
5.2.1 Dataset and Experimental Setting |
|
|
88 | (2) |
|
|
90 | (5) |
|
|
95 | (1) |
|
|
96 | (3) |
|
5.2.5 Personal Preference |
|
|
99 | (3) |
|
5.2.6 Sensitivity Analysis |
|
|
102 | (2) |
|
5.3 Summary and Future Directions |
|
|
104 | (3) |
|
5.3.1 Evaluation of Mobile Local Search |
|
|
104 | (1) |
|
5.3.2 User Modeling and Personalized Search |
|
|
105 | (2) |
Chapter 6 Entity Ranking |
|
107 | (20) |
|
6.1 An Overview of Entity Ranking |
|
|
107 | (2) |
|
|
109 | (4) |
|
|
109 | (2) |
|
|
111 | (1) |
|
6.2.3 Web Search Experience |
|
|
112 | (1) |
|
6.3 Feature Space Analysis |
|
|
113 | (3) |
|
6.3.1 Probabilistic Feature Framework |
|
|
113 | (2) |
|
6.3.2 Graph-Based Entity Popularity Feature |
|
|
115 | (1) |
|
6.4 Machine-Learned Ranking for Entities |
|
|
116 | (4) |
|
|
117 | (1) |
|
6.4.2 Pairwise Comparison Model |
|
|
117 | (2) |
|
6.4.3 Training Ranking Function |
|
|
119 | (1) |
|
|
120 | (5) |
|
|
120 | (1) |
|
6.5.2 User Data-Based Evaluation |
|
|
121 | (3) |
|
6.5.3 Editorial Evaluation |
|
|
124 | (1) |
|
|
125 | (2) |
Chapter 7 Multi-Aspect Relevance Ranking |
|
127 | (20) |
|
|
127 | (2) |
|
|
129 | (2) |
|
|
131 | (4) |
|
7.2.1 Learning to Rank for Vertical Searches |
|
|
131 | (2) |
|
7.2.2 Multi-Aspect Relevance Formulation |
|
|
133 | (1) |
|
|
133 | (1) |
|
|
134 | (1) |
|
7.3 Learning Aggregation Functions |
|
|
135 | (3) |
|
7.3.1 Learning Label Aggregation |
|
|
135 | (2) |
|
7.3.2 Learning Model Aggregation |
|
|
137 | (1) |
|
|
138 | (7) |
|
|
138 | (2) |
|
|
140 | (1) |
|
7.4.3 Offline Experimental Results |
|
|
141 | (2) |
|
7.4.4 Online Experimental Results |
|
|
143 | (2) |
|
7.5 Conclusions and Future Work |
|
|
145 | (2) |
Chapter 8 Aggregated Vertical Search |
|
147 | (34) |
|
|
147 | (2) |
|
|
149 | (9) |
|
|
149 | (3) |
|
|
152 | (1) |
|
|
153 | (1) |
|
8.1.4 Vertical-Query Features |
|
|
154 | (4) |
|
8.1.5 Implementation Details |
|
|
158 | (1) |
|
8.2 Combination of Evidence |
|
|
158 | (8) |
|
|
158 | (4) |
|
8.2.2 Vertical Presentation |
|
|
162 | (4) |
|
|
166 | (10) |
|
8.3.1 Vertical Selection Evaluation |
|
|
167 | (1) |
|
8.3.2 End-to-End Evaluation |
|
|
168 | (8) |
|
|
176 | (3) |
|
8.4.1 Dealing with New Verticals |
|
|
176 | (3) |
|
|
179 | (1) |
|
|
179 | (2) |
Chapter 9 Cross-Vertical Search Ranking |
|
181 | (20) |
|
|
181 | (1) |
|
|
182 | (4) |
|
9.1.1 Problem Formulation |
|
|
182 | (1) |
|
|
183 | (3) |
|
|
186 | (5) |
|
9.2.1 Objective Specification |
|
|
187 | (2) |
|
9.2.2 Optimization and Implementation |
|
|
189 | (2) |
|
9.3 Experimental Evaluation |
|
|
191 | (7) |
|
|
192 | (1) |
|
9.3.2 Experimental Setting |
|
|
193 | (1) |
|
9.3.3 Results and Discussions |
|
|
193 | (5) |
|
|
198 | (2) |
|
|
200 | (1) |
References |
|
201 | (22) |
Author Index |
|
223 | (10) |
Subject Index |
|
233 | |