Muutke küpsiste eelistusi

Reliable Data Communication [Kõva köide]

(The Pennsylvania State University), Series edited by (National Chiao-Tung University)
  • Formaat: Hardback, 350 pages, kõrgus x laius: 229x152 mm, kaal: 670 g
  • Sari: Telecommunications
  • Ilmumisaeg: 27-Oct-1997
  • Kirjastus: Morgan Kaufmann Publishers In
  • ISBN-10: 0124917402
  • ISBN-13: 9780124917408
  • Kõva köide
  • Hind: 97,74 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 350 pages, kõrgus x laius: 229x152 mm, kaal: 670 g
  • Sari: Telecommunications
  • Ilmumisaeg: 27-Oct-1997
  • Kirjastus: Morgan Kaufmann Publishers In
  • ISBN-10: 0124917402
  • ISBN-13: 9780124917408
Explains techniques for attaining reliable and efficient data communication over noisy channels and all types of data networks. Treatment is based on Shannon's Mathematical Theory of Communication, and on the common-sense realization of the importance of two-way communication. Background chapters cover basic principles of random signals and noise and properties of block and trellis codes. Main results are emphasized, with proofs and detailed discussion omitted. Later chapters deal with reliable data communication at the link, network, and transport levels. Includes chapter problems and summaries. Can be used as a text for senior or graduate students in electrical and computer engineering, and as a reference for professionals. Annotation c. by Book News, Inc., Portland, Or.
Preface xiii
1 Introduction
1(7)
1.1 Feedback and ARQ
1(2)
1.2 Error Correction with ARQ
3(1)
1.3 Time-Constrained Communication
4(1)
1.4 The Basic Communication Process
5(1)
1.5 Background
6(1)
1.6 Communication Networks
6(1)
1.7 Multicasting
6(2)
2 Data Communication Over Noisy Channels
8(29)
2.1 Random Variables
10(3)
2.1.1 The Gaussian Random Variable
12(1)
2.2 Random Processes
13(8)
2.2.1 The Stationary Random Process
14(3)
2.2.2 White Noise Related to Representation by a Complete Set of Orthonormal Waveforms
17(2)
2.2.3 The Time Discrete Markov Process
19(1)
2.2.4 The Poisson Process
20(1)
2.3 Fundamental Information Theory Limits
21(8)
2.3.1 Source Entropy and Lossless Data Compression
21(1)
2.3.2 Entropy and Large Number Laws
22(2)
2.3.3 The Communication Channel Model
24(1)
2.3.4 Information in Discrete Input/Output Alphabet Channels
24(2)
2.3.5 The Noisy Channel Coding Theorem
26(1)
2.3.6 Information in Time-Discrete, Amplitude Continuous Channels
27(1)
2.3.7 Waveform Channels
28(1)
2.4 Transmitted Waveform Selection
29(3)
2.4.1 Modulation Methods
29(2)
2.4.2 Decisions with Codes
31(1)
2.5 Summary
32(2)
2.6 Problems
34(3)
3 Block Error Control Codes
37(42)
3.1 The General Block Code
38(1)
3.2 Parity Check Block Codes
38(5)
3.2.1 Matrix Representation
38(3)
3.2.2 Error Correction and Hamming Distance
41(1)
3.2.3 Group Structure of Parity Check Codes
41(2)
3.3 Cyclic Block Codes
43(10)
3.3.1 Fields (and Rings)
44(1)
3.3.2 Finite Field Operations with Feedback Shift Registers
45(1)
3.3.3 Definition and Basic Properties of Cyclic Codes
46(1)
3.3.4 Cyclic Codes for Pure Error Detection
47(1)
3.3.5 Cyclic Code Systematic Generator Matrix
48(1)
3.3.6 Some Simple Error Correction Circuits
49(1)
3.3.7 Burst Error Correction and Error Trapping
50(3)
3.4 BCH Cyclic Codes
53(2)
3.4.1 Decoding Complexity of BCH Codes
54(1)
3.4.2 Error-Correcting Limitations of BCH Codes
54(1)
3.5 Reed-Solomon Codes
55(1)
3.6 Concatenated Codes
56(1)
3.7 Majority Logic Decoding
57(1)
3.8 Product Codes
58(3)
3.8.1 Burst Correction for Product Codes
60(1)
3.9 The Role of Error-Correcting Codes in Reliable Communication
61(1)
3.10 Decoding Beyond Guaranteed Error Correction Bounds
62(3)
3.10.1 Hamming Distance in Nonbinary Codes
63(1)
3.10.2 Decoding Beyond the Guaranteed Bound for Concatenated Codes
63(2)
3.11 Vector Symbol Decoding
65(5)
3.11.1 The Outer Code Structure
66(1)
3.11.2 Linear Independence of Error Vectors
66(1)
3.11.3 Description of the Technique
67(1)
3.11.4 Conditions for Successful Decoding
68(1)
3.11.5 Example of Vector Symbol Decoding
69(1)
3.12 Majority-Logic-Like Decoding of Vector Symbols
70(3)
3.12.1 Example of Vector Decoding with a (21, 11) Majority Logic Block Code
70(3)
3.13 Summary
73(1)
3.14 Problems
74(5)
4 Trellis Codes, Modulation Codes, and Soft Decision Decoding
79(24)
4.1 General Principles of Convolutional Encoding
79(6)
4.1.1 Matrix of Unit Pulse Responses
81(1)
4.1.2 Semi-Infinite Matrix Representation
81(1)
4.1.3 State Diagram Representation
81(1)
4.1.4 Trellis Diagram Representation
82(1)
4.1.5 Constraint Length
83(1)
4.1.6 Minimum Distance
83(1)
4.1.7 Catastrophic Error Propagation
83(1)
4.1.8 Convolutional Codes with Feedback Circuits
84(1)
4.1.9 Punctured Convolutional Codes
85(1)
4.1.10 Terminating a Convolutional Code
85(1)
4.2 Convolutional Code Decoding Techniques
85(8)
4.2.1 Soft Decisions and Their Use in Decoding
86(2)
4.2.2 Viterbi Decoding
88(1)
4.2.3 Sequential Decoding
89(2)
4.2.4 Majority Logic Decoding
91(2)
4.3 ARQ With Convolutional Codes
93(1)
4.3.1 ARQ with Sequential Decoding
93(1)
4.3.2 ARQ with Viterbi Decoding
94(1)
4.3.3 ARQ with Majority Logic Decoding
94(1)
4.4 Modulation Codes
94(4)
4.5 Iterative Soft Decision Decoding
98(1)
4.6 Summary
99(1)
4.7 Problems
100(3)
5 Reliable Block-Coded ARQ
103(26)
5.1 Error Detection Properties
103(3)
5.1.1 The Cost of "Fail-Safe" Protection
105(1)
5.1.2 Error Detection with Soft Decision Decoding of Binary Codes
106(1)
5.2 Fundamental ARQ Protocol Principles
106(1)
5.3 Protocols for Reliable Stop-and-Wait Communication
107(6)
5.3.1 Variable Delay and Ordering
108(2)
5.3.2 Efficiency Comparison
110(1)
5.3.3 Stop-and-Wait with Two-Way Communication
111(1)
5.3.4 A One-Sequence-Number Policy
112(1)
5.4 Stop-and-Wait with Multiple Frames Outstanding
113(1)
5.5 Full Duplex ARQ Protocols
114(1)
5.6 The Go-Back Protocol with Continuous Two-Way Transmission
115(2)
5.7 Efficiency of the Continuous Go-Back Strategy
117(1)
5.8 Continuous Transmission with Unequal Frame Durations
117(2)
5.9 Condition for Continuous Transmission
119(1)
5.10 Data Link Control Standards
120(5)
5.10.1 The Place of Link Error Control in a Network
121(1)
5.10.2 The HDLC Standard
122(3)
5.11 Summary
125(1)
5.12 Problems
126(3)
6 Selective Repeat Strategies
129(14)
6.1 Selective Repeat Strategies with Frame-By-Frame Acknowledgments
130(5)
6.1.1 The Circulating Memory Technique
131(2)
6.1.2 Generalization and Modification of the Circulating Memory Technique
133(1)
6.1.3 The Interlaced Memory Technique
134(1)
6.2 Another Window Approach to Selective Repeat
135(1)
6.3 Selective Repeat with Cumulative Acknowledgments
136(2)
6.3.1 In-Order Arrival
137(1)
6.3.2 Out-of-Order Arrival
138(1)
6.4 Selective Repeat in Large File Transfer
138(2)
6.4.1 Buffer Storage Limitations
139(1)
6.5 Memory and Incremental Redundancy Techniques
140(1)
6.6 Summary
140(1)
6.7 Problems
141(2)
7 ARQ with Memory
143(35)
7.1 Type I Memory ARQ
145(2)
7.1.1 Memory Storage Considerations
145(2)
7.2 Combining Rules for Type I Memory ARQ
147(3)
7.2.1 Combining Rules with Single- and Double-Null-Zone Reception
148(2)
7.3 Performance of a Finite State Combiner
150(2)
7.3.1 Performance Summary
152(1)
7.4 Type II Memory ARQ: The Incremental Redundancy Concept
152(2)
7.4.1 The Small Increments Approach
153(1)
7.5 Type II Memory ARQ with Equal Size Increments
154(7)
7.5.1 Improved Sequential Signaling for Nonbinary Signals
155(4)
7.5.2 Subblock Mapping Improvements
159(1)
7.5.3 Whole Block Invertible Mapping
160(1)
7.6 Concatenation and Erasure Subblocks
161(1)
7.7 Noisy Return Channels and Similarity/Difference Tests
162(2)
7.7.1 Type I Memory ARQ
162(1)
7.7.2 Type II Memory ARQ
163(1)
7.8 Some Comparisons
164(2)
7.9 Convolutional Code Memory ARQ
166(3)
7.9.1 Type I Memory ARQ
166(1)
7.9.2 Type II Memory ARQ
167(2)
7.10 Summary
169(1)
7.11 Problems
170(2)
7A Derivation of the Null Zone Combining Performance Curves
172(6)
7A.1 State Transition Probability Matrices
172(1)
7A.2 Maximum Initial Error Probability Reduction
173(3)
7A.3 Asymptotic Results
176(2)
8 Reliable Transmission Over Time-Varying Channels
178(26)
8.1 Modeling Time-Varying Channels
179(7)
8.1.1 First Order Models of a Narrowband Fading Radio Channel
179(1)
8.1.2 Wideband Signals
180(3)
8.1.3 Markov Chain Modeling of Parameter Time Variation
183(2)
8.1.4 Arbitrarily Varying Channels and the Unfolding Channel Concept
185(1)
8.2 Strategies for Time-Varying Channels
186(9)
8.2.1 Adjusting Rate to Channel Conditions
186(1)
8.2.2 Use of Alternate or Additional Communication Resources
187(1)
8.2.3 Achieving Unfolding Channel Capacity
187(1)
8.2.4 An Example with Rayleigh Fading
188(3)
8.2.5 Bit Error Probability Under More Rapid Fading Conditions
191(3)
8.2.6 Data Rates with the More Rapid Fading Model
194(1)
8.2.7 Multilevel Signaling
195(1)
8.3 Delay and Time Constraint Factors
195(2)
8.4 Summary
197(1)
8.5 Problems
198(2)
8A Models of Increasing Persistence of Channel States
200(4)
8A.1 First Model--Multimode States
200(1)
8A.2 Second Model--Infinite Chain of Bad States
201(3)
9 Multiaccess Networks
204(30)
9.1 ALOHA Communication
207(4)
9.1.1 Quantitative Analysis of Idealized ALOHA Communication
207(4)
9.1.2 More Efficient Alternatives
211(1)
9.2 Collision Avoidance
211(8)
9.2.1 Retransmission and ARQ in Ethernet
213(1)
9.2.2 Reservations and Polling
214(3)
9.2.3 Collision Resolution Algorithms
217(2)
9.3 Ring Networks
219(9)
9.3.1 The Token Ring
219(1)
9.3.2 The IEEE 802.5 Standard Token Ring
220(2)
9.3.3 The FDDI Token Ring
222(1)
9.3.4 Efficiency Limitation of the Token Ring
223(1)
9.3.5 The Slotted Ring with Destination Removal
224(4)
9.4 Bus and Dual Bus Networks
228(2)
9.5 Summary
230(1)
9.6 Problems
231(3)
10 Reliable Communication in Data Networks
234(40)
10.1 The Traditional Dedicated Circuit
234(1)
10.2 Virtual Circuits
235(2)
10.3 Datagrams, Multiple Virtual Circuits, and the time Ordering Problem
237(3)
10.3.1 Incorporating Extra Information in the Check Computation
239(1)
10.4 Mixed Media Communication
240(2)
10.5 Network Structures and Internetworking
242(4)
10.5.1 The Internet Protocol (IP)
244(2)
10.6 Standard Transport Layer Protocols
246(5)
10.6.1 Establishing and Terminating a Transport Connection
248(2)
10.6.2 Retransmission Timeout
250(1)
10.7 Asynchronous Transfer Mode (ATM)
251(5)
10.7.1 ATM Cells
251(1)
10.7.2 The ATM Adaptation Layer
252(2)
10.7.3 Network Traffic Management
254(2)
10.8 Frame Relay
256(1)
10.9 High-Speed Network Protocols
257(2)
10.9.1 XTP (Express Transfer Protocol)
258(1)
10.9.2 Wormhole Routing
258(1)
10.10 Transport Layer ARQ Design Factors
259(8)
10.10.1 Window Size
259(1)
10.10.2 Retransmission Timeout
259(1)
10.10.3 Frequency and Type of Acknowledgment
260(1)
10.10.4 Stop-and-Wait or ACK at End of Window
260(4)
10.10.5 Higher ACK Frequency and Sliding Window Protocols
264(1)
10.10.6 Selective Repeat Strategies
264(3)
10.11 A Transport Protocol Based on Replicated File Comparison
267(3)
10.11.1 Finding the Disagreeing Pages
267(3)
10.12 Summary
270(1)
10.13 Problems
271(3)
11 Wireless and Noisy Link Multiuser Data Communication
274(37)
11.1 Limits to Multiuser Channel Efficiency
276(4)
11.1.1 Strongest Signal Capture and Multiple Signal Demodulation
278(1)
11.1.2 Use of Antenna Directivity
279(1)
11.2 The Cellular Concept in Mobile Communication
280(2)
11.3 Packet Radio Communication
282(1)
11.4 Direct Sequence CDMA and Spread ALOHA
282(4)
11.4.1 Orthogonal Codes
284(1)
11.4.2 Spread ALOHA
284(2)
11.5 Frequency-Hopping CDMA
286(7)
11.5.1 Fast Frequency Hopping with Q-FSK Basic Symbols
287(5)
11.5.2 Slow Frequency Hopping
292(1)
11.6 Reservation in Packet Radio Networks
293(1)
11.7 A Multibase ALOHA Scheme
294(8)
11.7.1 The Random Forwarding Concept
294(2)
11.7.2 Power Control
296(1)
11.7.3 ARQ in Multibase ALOHA
296(1)
11.7.4 Efficiency of ARQ without Combining
297(1)
11.7.5 Diversity Reception and Combining
298(1)
11.7.6 Fading Effects
299(1)
11.7.7 A Simplified Multibase Example
299(3)
11.8 ARQ on Error-Prone Cascaded Channels
302(4)
11.8.1 A Hop-by Hop versus End-to-End ARQ Example
302(1)
11.8.2 A Subnetwork of Noisy Links
303(1)
11.8.3 Forward Error Correction or Added Redundancy for Cascaded Noisy Channels
304(2)
11.8.4 Concatenated Codes on Cascaded Channels
306(1)
11.9 Summary
306(2)
11.10 Problems
308(3)
12 The Acknowledgment Problem in Multicasting
311(20)
12.1 Noisy Networks with a Broadcast Architecture
311(5)
12.1.1 Satellite or Other Wireless Transfer from One Site to Multiple Sites
312(4)
12.2 Broadcast to Locally Interconnected Receivers
316(5)
12.2.1 Local Communication When One or More Sites Receive Correct Copies
318(1)
12.2.2 Error Correction from Multiple Erroneous Copies
319(2)
12.3 Ring Networks
321(1)
12.4 Tree and General Network Multicast
322(4)
12.4.1 Cable TV or Natural Tree Networks
323(1)
12.4.2 Acknowledgment Gathering
323(2)
12.4.3 Internetworking and Diverse Networks
325(1)
12.4.4 Multicast Switching Networks
326(1)
12.5 Summary
326(2)
12.6 Problems
328(3)
References 331(14)
Index 345
Winston I. Way received his PhD from the University of Pennsylvania in 1983. From 1984 until 1992, he was wth Applied Research of Bellcore, researching various projects in lightwave systems and pioneering projects in distributing satellite, digital radio, and cable television signals by using subcarrier multiplex techniques. In 1992 he joined the Department of Communications Engineering at National Chiao-Tung University, where he is now a professor, and chair of the department. Dr. Way has published a book chapter and more than 90 referred technical papers in international journals and conferences, and has been serving as a chair or technical program committee member in numerous IEEE/LEOS and IEEE/MTT international conferences. A Senior member of IEEE, he was an IEEE Journal guest editor in 1990, and is a Fellow of the Optical Society of America.