Muutke küpsiste eelistusi

Representations for Genetic and Evolutionary Algorithms Softcover reprint of the original 1st ed. 2002 [Pehme köide]

  • Formaat: Paperback / softback, 290 pages, kõrgus x laius: 235x155 mm, kaal: 474 g, XIV, 290 p., 1 Paperback / softback
  • Sari: Studies in Fuzziness and Soft Computing 104
  • Ilmumisaeg: 18-Apr-2012
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642880967
  • ISBN-13: 9783642880964
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 290 pages, kõrgus x laius: 235x155 mm, kaal: 474 g, XIV, 290 p., 1 Paperback / softback
  • Sari: Studies in Fuzziness and Soft Computing 104
  • Ilmumisaeg: 18-Apr-2012
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642880967
  • ISBN-13: 9783642880964
In the field of genetic and evolutionary algorithms (GEAs), much theory and empirical study has been heaped upon operators and test problems, but problem representation has often been taken as given. This monograph breaks with this tradition and studies a number of critical elements of a theory of representations for GEAs and applies them to the empirical study of various important idealized test functions and problems of commercial import. The book considers basic concepts of representations, such as redundancy, scaling and locality and describes how GEAs'performance is influenced. Using the developed theory representations can be analyzed and designed in a theory-guided manner. The theoretical concepts are used as examples for efficiently solving integer optimization problems and network design problems. The results show that proper representations are crucial for GEAs'success.

Muu info

Springer Book Archives
1. Introduction.- 1.1 Purpose.- 1.2 Organization.-
2. Representations
for Genetic and Evolutionary Algorithms.- 2.1 Genetic Representations.- 2.2
Genetic and Evolutionary Algorithms.- 2.3 Problem Difficulty.- 2.4 Existing
Recommendations for the Design of Efficient Representations for Genetic and
Evolutionary Algorithms.-
3. Three Elements of a Theory of Genetic and
Evolutionary Representations.- 3.1 Redundancy.- 3.2 Building Block-Scaling.-
3.3 Distance Distortion.- 3.4 Summary and Conclusions.-
4. Time-Quality
Framework for a Theory-Based Analysis and Design of Representations.- 4.1
Solution Quality and Time to Convergence.- 4.2 Elements of the Framework.-
4.3 The Framework.- 4.4 Implications for the Design of Representations.- 4.5
Summary and Conclusions.-
5. Analysis of Binary Representations of Integers.-
5.1 Two Integer Optimization Problems.- 5.2 Binary String Representations.-
5.3 A Theoretical Comparison.- 5.4 Empirical Results.- 5.5 Conclusions.-
6.
Analysis of Tree Representations.- 6.1 The Tree Design Problem.- 6.2 Prüfer
Numbers.- 6.3 The Link and Node Biased Encoding.- 6.4 The Characteristic
Vector Encoding.- 6.5 Conclusions.-
7. Design of Tree Representations.- 7.1
Network Random Keys (NetKeys).- 7.2 A Direct Tree Representation (NetDir).-
8. Performance of Genetic and Evolutionary Algorithms on Tree Problems.- 8.1
GEA Performance on Scalable Test Tree Problems.- 8.2 GEA Performance on the
Optimal Communication Spanning Tree Problem.- 8.3 Summary.-
9. Summary,
Conclusions and Future Work.- 9.1 Summary.- 9.2 Conclusions.- 9.3 Future
Work.- A. Optimal Communication Spanning Tree Test Instances.- A.1 Palmers
Test Instances.- A.2 Raidls Test Instances.- A.3 Berrys Test Instances.-
A.4 Real World Problems.- References.- List of Symbols.- List ofAcronyms.