|
|
1 | (8) |
|
|
4 | (2) |
|
1.1.1 Optimization of Quantum Circuits |
|
|
4 | (1) |
|
1.1.2 Complexity Analysis |
|
|
5 | (1) |
|
|
6 | (3) |
|
|
9 | (36) |
|
|
9 | (1) |
|
2.2 Boolean Function Decomposition |
|
|
10 | (3) |
|
2.2.1 Ashenhurst Decomposition |
|
|
10 | (1) |
|
2.2.2 Curtis Decomposition |
|
|
11 | (1) |
|
|
12 | (1) |
|
2.2.4 Multiplexer Decomposition |
|
|
12 | (1) |
|
2.3 Exclusive-OR Sum of Products |
|
|
13 | (2) |
|
2.4 Boolean Satisfiability and SAT Modulo Theory |
|
|
15 | (1) |
|
|
16 | (7) |
|
2.5.1 Reversible Function |
|
|
17 | (3) |
|
|
20 | (2) |
|
2.5.3 Reversible Circuits |
|
|
22 | (1) |
|
|
23 | (8) |
|
|
24 | (2) |
|
|
26 | (4) |
|
|
30 | (1) |
|
2.7 Cost Metrics for Reversible and Quantum Circuits |
|
|
31 | (5) |
|
|
31 | (2) |
|
|
33 | (1) |
|
|
34 | (1) |
|
|
35 | (1) |
|
2.7.5 Nearest Neighbor Cost |
|
|
36 | (1) |
|
|
36 | (9) |
|
2.8.1 Binary Decision Diagrams |
|
|
36 | (2) |
|
2.8.2 Quantum Multiple-Valued Decision Diagrams |
|
|
38 | (7) |
|
3 Optimizations and Complexity Analysis on the Reversible Level |
|
|
45 | (46) |
|
|
45 | (7) |
|
3.1.1 Optimization Approaches of Reversible Circuits |
|
|
46 | (5) |
|
3.1.2 Complexity of Reversible Circuits |
|
|
51 | (1) |
|
3.2 Exact Quantum Cost Optimization |
|
|
52 | (13) |
|
|
52 | (1) |
|
|
53 | (6) |
|
3.2.3 Experimental Results |
|
|
59 | (6) |
|
3.3 Heuristic Quantum Cost Optimization |
|
|
65 | (18) |
|
3.3.1 Simulated Annealing |
|
|
66 | (1) |
|
|
67 | (1) |
|
|
68 | (3) |
|
3.3.4 Experimental Results |
|
|
71 | (12) |
|
3.4 Complexity Analysis of Reversible Circuits |
|
|
83 | (6) |
|
3.4.1 Complexity of Single-Target Circuits |
|
|
83 | (1) |
|
3.4.2 Complexity of MPMCT Circuits |
|
|
84 | (1) |
|
3.4.3 Upper Bounds for Single-Target Gates |
|
|
85 | (2) |
|
3.4.4 Upper Bounds for Reversible Circuits |
|
|
87 | (2) |
|
|
89 | (2) |
|
4 Optimization and Complexity Analysis on the Mapping Level |
|
|
91 | (50) |
|
|
91 | (9) |
|
|
92 | (8) |
|
4.1.2 Complexity of NCT Circuits |
|
|
100 | (1) |
|
4.2 Improving the Mapping of Single-Target Gates |
|
|
100 | (12) |
|
|
101 | (1) |
|
4.2.2 Mapping of Single-Target Gates |
|
|
101 | (3) |
|
4.2.3 Experimental Evaluation |
|
|
104 | (7) |
|
4.2.4 Remarks and Observations |
|
|
111 | (1) |
|
4.3 Improving the Mapping of MPMCT Gates to Clifford + T Circuits |
|
|
112 | (15) |
|
4.3.1 Clifford + T Aware Reversible Circuit Mapping |
|
|
112 | (1) |
|
4.3.2 Proposed Mapping Approaches |
|
|
113 | (1) |
|
4.3.3 MPMCT Gates Mapping |
|
|
114 | (8) |
|
4.3.4 Experimental Results |
|
|
122 | (5) |
|
4.4 Complexity Analysis of NCT Circuits |
|
|
127 | (13) |
|
4.4.1 Upper Bounds for MPMCT Gates |
|
|
128 | (1) |
|
4.4.2 Upper Bounds for Single-Target Gates |
|
|
129 | (9) |
|
4.4.3 Upper Bounds for NCT Circuits |
|
|
138 | (2) |
|
|
140 | (1) |
|
5 Optimizations and Complexity Analysis on the Quantum Level |
|
|
141 | (34) |
|
|
141 | (4) |
|
5.1.1 Optimization of Quantum Circuits |
|
|
141 | (4) |
|
5.1.2 Complexity of Quantum Circuits |
|
|
145 | (1) |
|
5.2 Depth Optimization for NCV Circuits |
|
|
145 | (11) |
|
|
147 | (1) |
|
5.2.2 Optimization Approaches |
|
|
148 | (5) |
|
5.2.3 Experimental Results |
|
|
153 | (3) |
|
5.3 NCV-Cost Optimization |
|
|
156 | (7) |
|
|
157 | (1) |
|
|
158 | (1) |
|
5.3.3 Experimental Results |
|
|
159 | (4) |
|
5.4 Complexity Analysis of Quantum Circuits |
|
|
163 | (11) |
|
5.4.1 Complexity of NCV Quantum Circuits |
|
|
163 | (6) |
|
5.4.2 Complexity of Clifford + T Quantum Circuits |
|
|
169 | (5) |
|
|
174 | (1) |
|
|
175 | |
|
|
179 | |