Muutke küpsiste eelistusi

RF and Microwave Circuit Design: Theory and Applications [Kõva köide]

(University of Surrey, UK), (Brunel University, UK)
  • Formaat: Hardback, 528 pages, kõrgus x laius x paksus: 244x170x34 mm, kaal: 1503 g
  • Sari: Microwave and Wireless Technologies Series
  • Ilmumisaeg: 07-Oct-2021
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119114632
  • ISBN-13: 9781119114635
Teised raamatud teemal:
  • Formaat: Hardback, 528 pages, kõrgus x laius x paksus: 244x170x34 mm, kaal: 1503 g
  • Sari: Microwave and Wireless Technologies Series
  • Ilmumisaeg: 07-Oct-2021
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119114632
  • ISBN-13: 9781119114635
Teised raamatud teemal:
RF and Microwave Circuit Design Provides up-to-date coverage of the fundamentals of high-frequency microwave technology, written by two leading voices in the field

RF and Microwave Circuit Design: Theory and Applications is an authoritative, highly practical introduction to basic RF and microwave circuits. With an emphasis on real-world examples, the text explains how distributed circuits using microstrip and other planar transmission lines can be designed and fabricated for use in modern high-frequency passive and active circuits and sub-systems. The authors provide clear and accurate guidance on each essential aspect of circuit design, from the theory of transmission lines to the passive and active circuits that form the basis of modern high-frequency circuits and sub-systems.

Assuming a basic grasp of electronic concepts, the book is organized around first principles and includes an extensive set of worked examples to guide student readers with no prior grounding in the subject of high-frequency microwave technology. Throughout the text, detailed coverage of practical design using distributed circuits demonstrates the influence of modern fabrication processes. Filling a significant gap in literature by addressing RF and microwave circuit design with a central theme of planar distributed circuits, this textbook:





Provides comprehensive discussion of the foundational concepts of RF and microwave transmission lines introduced through an exploration of wave propagation along a typical transmission line Describes fabrication processes for RF and microwave circuits, including etched, thick-film, and thin-film RF circuits Covers the Smith Chart and its application in circuit design, S-parameters, Mason s non-touching loop rule, transducer power gain, and stability Discusses the influence of noise in high-frequency circuits and low-noise amplifier design Features an introduction to the design of high-frequency planar antennas Contains supporting chapters on fabrication, circuit parameters, and measurements Includes access to a companion website with PowerPoint slides for instructors, as well as supplementary resources

Perfect for senior undergraduate students and first-year graduate students in electrical engineering courses, RF and Microwave Circuit Design: Theory and Applications will also earn a place in the libraries of RF and microwave professionals looking for a useful reference to refresh their understanding of fundamental concepts in the field.
Preface xiii
About the Companion Website xv
1 RF Transmission Lines
1(56)
1.1 Introduction
1(1)
1.2 Voltage, Current, and Impedance Relationships on a Transmission Line
1(4)
1.3 Propagation Constant
5(1)
1.3.1 Dispersion
6(1)
1.3.2 Amplitude Distortion
6(1)
1.4 Lossless Transmission Lines
6(2)
1.5 Matched and Mismatched Transmission Lines
8(1)
1.6 Waves on a Transmission Line
8(2)
1.7 The Smith Chart
10(10)
1.7.1 Derivation of the Smith Chart
10(2)
1.7.2 Properties of the Smith Chart
12(8)
1.8 Stubs
20(1)
1.9 Distributed Matching Circuits
21(3)
1.10 Manipulation of Lumped Impedances Using the Smith Chart
24(2)
1.11 Lumped Impedance Matching
26(11)
1.11.1 Matching a Complex Load Impedance to a Real Source Impedance
27(8)
1.11.2 Matching a Complex Load Impedance to a Complex Source Impedance
35(2)
1.12 Equivalent Lumped Circuit of a Lossless Transmission Line
37(1)
1.13 Supplementary Problems
38(2)
Appendix 1.A Coaxial Cable
40(2)
1.A.1 Electromagnetic Field Patterns in Coaxial Cable
40(1)
1.A.2 Essential Properties of Coaxial Cables
40(2)
Appendix 1.B Coplanar Waveguide
42(1)
1.B.1 Structure of Coplanar Waveguide (CPW)
42(3)
1.B.2 Electromagnetic Field Distribution on a CPW Line
42(1)
1.B.3 Essential Properties of Coplanar (CPW) Lines
43(1)
1.B.4 Summary of Key Points Relating to CPW Lines
44(1)
Appendix 1.C Metal Waveguide
45(8)
1.C.1 Waveguide Principles
45(1)
1.C.2 Waveguide Propagation
45(1)
1.C.3 Rectangular Waveguide Modes
45(1)
1.C.4 The Waveguide Equation
46(1)
1.C.5 Phase and Group Velocities
47(1)
1.C.6 Field Theory Analysis of Rectangular Waveguides
47(2)
1.C.7 Waveguide Impedance
49(1)
1.C.8 Higher-Order Rectangular Waveguide Modes
49(1)
1.C.9 Waveguide Attenuation
50(1)
1.C.10 Sizes of Rectangular Waveguide and Waveguide Designation
50(1)
1.C.11 Circular Waveguide
50(3)
Appendix 1.D Microstrip
53(1)
Appendix 1.E Equivalent Lumped Circuit Representation of a Transmission Line
54(2)
References
56(1)
2 Planar Circuit Design
57(26)
2.1 Introduction
57(1)
2.2 Electromagnetic Field Distribution Across a Microstrip Line
57(1)
2.3 Effective Relative Permittivity, εMSTRIPR, reff
57(1)
2.4 Microstrip Design Graphs and CAD Software
58(1)
2.5 Operating Frequency Limitations
59(1)
2.6 Skin Depth
60(1)
2.7 Examples of Microstrip Components
61(7)
2.7.1 Branch-Line Coupler
61(2)
2.7.2 Quarter-Wave Transformer
63(4)
2.7.3 Wilkinson Power Divider
67(1)
2.8 Microstrip Coupled-Line Structures
68(10)
2.8.1 Analysis of Microstrip Coupled Lines
68(2)
2.8.2 Microstrip Directional Couplers
70(3)
2.8.2.1 Design of Microstrip Directional Couplers
73(1)
2.8.2.2 Directivity of Microstrip Directional Couplers
74(1)
2.8.2.3 Improvements to Microstrip Directional Couplers
75(1)
2.8.3 Examples of Other Common Microstrip Coupled-Line Structures
76(1)
2.8.3.1 Microstrip DC Break
76(1)
2.8.3.2 Edge-Coupled Microstrip Band-Pass Filter
76(1)
2.8.3.3 Lange Coupler
76(2)
2.9 Summary
78(1)
2.10 Supplementary Problems
78(2)
Appendix 2.A Microstrip Design Graphs
80(1)
References
81(2)
3 Fabrication Processes for RF and Microwave Circuits
83(44)
3.1 Introduction
83(1)
3.2 Review of Essential Material Parameters
83(5)
3.2.1 Dielectrics
83(3)
3.2.2 Conductors
86(2)
3.3 Requirements for RF Circuit Materials
88(2)
3.4 Fabrication of Planar High-Frequency Circuits
90(9)
3.4.1 Etched Circuits
90(2)
3.4.2 Thick-Film Circuits (Direct Screen Printed)
92(3)
3.4.3 Thick Film Circuits (Using Photoimageable Materials)
95(3)
3.4.4 Low-Temperature Co-Fired Ceramic Circuits
98(1)
3.5 Use of Ink Jet Technology
99(1)
3.6 Characterization of Materials for RF and Microwave Circuits
100(23)
3.6.1 Measurement of Dielectric Loss and Dielectric Constant
100(1)
3.6.1.1 Cavity Resonators
101(6)
3.6.1.2 Dielectric Characterization by Cavity Perturbation
107(3)
3.6.1.3 Use of the Split Post Dielectric Resonator (SPDR)
110(1)
3.6.1.4 Open Resonator
111(2)
3.6.1.5 Free-Space Transmission Measurements
113(1)
3.6.2 Measurement of Planar Line Properties
114(1)
3.6.2.1 The Microstrip Resonant Ring
115(2)
3.6.2.2 Non-resonant Lines
117(4)
3.6.3 Physical Properties of Microstrip Lines
121(2)
3.7 Supplementary Problems
123(2)
References
125(2)
4 Planar Circuit Design II
127(44)
4.1 Introduction
127(1)
4.2 Discontinuities in Microstrip
127(11)
4.2.1 Open-End Effect
127(2)
4.2.2 Step-Width
129(4)
4.2.3 Corners
133(2)
4.2.4 Gaps
135(2)
4.2.5 T-Junctions
137(1)
4.3 Microstrip Enclosures
138(1)
4.4 Packaged Lumped-Element Passive Components
139(6)
4.4.1 Typical Packages for RF Passive Components
139(2)
4.4.2 Lumped-Element Resistors
141(2)
4.4.3 Lumped-Element Capacitors
143(1)
4.4.4 Lumped-Element Inductors
144(1)
4.5 Miniature Planar Components
145(6)
4.5.1 Spiral Inductors
145(1)
4.5.2 Loop Inductors
146(2)
4.5.3 Interdigitated Capacitors
148(1)
4.5.4 Metal-Insulator-Metal Capacitor
149(2)
Appendix 4.A Insertion Loss Due to a Microstrip Gap
151(1)
References
152(3)
5.5 S-Parameters
155(1)
5.1 Introduction
155(1)
5.2 S-Parameter Definitions
155(4)
5.3 Signal Flow Graphs
159(1)
5.4 Mason's Non-touching Loop Rule
159(1)
5.5 Reflection Coefficient of a Two-Port Network
160(4)
5.6 Power Gains of Two-Port Networks
164(2)
5.7 Stability
166(1)
5.8 Supplementary Problems
167(1)
Appendix 5.A Relationships Between Network Parameters
168(1)
5.A.1 Transmission Parameters (ABCD Parameters)
168(1)
5.A.2 Admittance Parameters (Y-Parameters)
169(1)
5.A.3 Impedance Parameters (Z-Parameters)
169(1)
References
169(2)
6 Microwave Ferrites
171(22)
6.1 Introduction
171(1)
6.2 Basic Properties of Ferrite Materials
171(7)
6.2.1 Ferrite Materials
171(1)
6.2.2 Precession in Ferrite Materials
172(1)
6.2.3 Permeability Tensor
173(2)
6.2.4 Faraday Rotation
175(3)
6.3 Ferrites in Metallic Waveguide
178(7)
6.3.1 Resonance Isolator
178(3)
6.3.2 Field Displacement Isolator
181(1)
6.3.3 Waveguide Circulator
181(4)
6.4 Ferrites in Planar Circuits
185(4)
6.4.1 Planar Circulators
185(1)
6.4.2 Edge-Guided-Mode Propagation
186(1)
6.4.3 Edge-Guided-Mode Isolator
187(1)
6.4.4 Phase Shifters
187(2)
6.5 Self-Biased Ferrites
189(1)
6.6 Supplementary Problems
189(1)
References
190(3)
7 Measurements
193(16)
7.1 Introduction
193(1)
7.2 RF and Microwave Connectors
193(3)
7.2.1 Maintenance of Connectors
194(1)
7.2.2 Connecting to Planar Circuits
195(1)
7.3 Microwave Vector Network Analyzers
196(9)
7.3.1 Description and Configuration
196(2)
7.3.2 Error Models Representing a VNA
198(6)
7.3.3 Calibration of a VNA
204(1)
7.4 On-Wafer Measurements
205(3)
7.5 Summary
208(1)
References
208(1)
8 RF Filters
209(30)
8.1 Introduction
209(1)
8.2 Review of Filter Responses
209(1)
8.3 Filter Parameters
209(2)
8.4 Design Strategy for RF and Microwave Filters
211(1)
8.5 Multi-Element Low-Pass Filter
211(1)
8.6 Practical Filter Responses
212(1)
8.7 Butterworth (or Maximally Flat) Response
212(7)
8.7.1 Butterworth Low-Pass Filter
212(4)
8.7.2 Butterworth High-Pass Filter
216(1)
8.7.3 Butterworth Band-Pass Filter
217(2)
8.8 Chebyshev (Equal Ripple) Response
219(3)
8.9 Microstrip Low-Pass Filter, Using Stepped Impedances
222(3)
8.10 Microstrip Low-Pass Filter, Using Stubs
225(4)
8.11 Microstrip Edge-Coupled Band-Pass Filters
229(4)
8.12 Microstrip End-Coupled Band-Pass Filters
233(2)
8.13 Practical Points Associated with Filter Design
235(1)
8.14 Summary
235(1)
8.15 Supplementary Problems
235(1)
Appendix 8.A Equivalent Lumped T-Network Representation of a Transmission Line
236(1)
References
237(2)
9 Microwave Small-Signal Amplifiers
239(28)
9.1 Introduction
239(1)
9.2 Conditions for Matching
239(1)
9.3 Distributed (Microstrip) Matching Networks
240(8)
9.4 DC Biasing Circuits
248(2)
9.5 Microwave Transistor Packages
250(1)
9.6 Typical Hybrid Amplifier
251(1)
9.7 DC Finger Breaks
251(1)
9.8 Constant Gain Circles
252(3)
9.9 Stability Circles
255(2)
9.10 Noise Circles
257(1)
9.11 Low-Noise Amplifier Design
258(3)
9.12 Simultaneous Conjugate Match
261(2)
9.13 Broadband Matching
263(1)
9.14 Summary
264(1)
9.15 Supplementary Problems
264(2)
References
266(1)
10 Switches and Phase Shifters
267(34)
10.1 Introduction
267(1)
10.2 Switches
268(17)
10.2.1 PIN Diodes
268(6)
10.2.2 Field Effect Transistors
274(7)
10.2.3 Microelectromechanical Systems
281(3)
10.2.4 Inline Phase Change Switch Devices
284(1)
10.3 Digital Phase Shifters
285(12)
10.3.1 Switched-Path Phase Shifter
285(2)
10.3.2 Loaded-Line Phase Shifter
287(4)
10.3.3 Reflection-Type Phase Shifter
291(1)
10.3.4 Schiffman 90° Phase Shifter
292(3)
10.3.5 Single-Switch Phase Shifter
295(2)
10.4 Supplementary Problems
297(1)
References
298(3)
11 Oscillators
301(1)
11.1 Introduction
301(1)
11.2 Criteria for Oscillation in a Feedback Circuit
301(1)
11.3 RF (Transistor) Oscillators
302(4)
11.3.1 Colpitts Oscillator
302(2)
11.3.2 Hartley Oscillator
304(1)
11.3.3 Clapp-Gouriet Oscillator
305(1)
11.4 Voltage-Controlled Oscillator
306(7)
11.5 Crystal-Controlled Oscillators
313(5)
11.5.1 Crystals
313(4)
11.5.2 Crystal-Controlled Oscillators
317(1)
11.6 Frequency Synthesizers
318(12)
11.6.1 The Phase-Locked Loop
320(1)
11.6.1.1 Principle of a Phase-Locked Loop
320(1)
11.6.1.2 Main Components of a Phase-Locked Loop
320(3)
11.6.1.3 Gain of Phase-Locked Loop
323(1)
11.6.1.4 Transient Analysis of a Phase-Locked Loop
324(2)
11.6.2 Indirect Frequency Synthesizer Circuits
326(4)
11.7 Microwave Oscillators
330(19)
11.7.1 Dielectric Resonator Oscillator
330(8)
11.7.2 Delay-Line Stabilized Microwave Oscillators
338(3)
11.7.3 Diode Oscillators
341(1)
11.7.3.1 Gunn Diode Oscillator
341(6)
11.7.3.2 IMPATT Diode Oscillator
347(2)
11.8 Oscillator Noise
349(2)
11.9 Measurement of Oscillator Noise
351(4)
11.10 Supplementary Problems
355(3)
References
358(1)
12 RF and Microwave Antennas
359(60)
12.1 Introduction
359(1)
12.2 Antenna Parameters
359(3)
12.3 Spherical Polar Coordinates
362(1)
12.4 Radiation from a Hertzian Dipole
363(4)
12.4.1 Basic Principles
363(3)
12.4.2 Gain of a Hertzian Dipole
366(1)
12.5 Radiation from a Half-Wave Dipole
367(5)
12.5.1 Basic Principles
367(4)
12.5.2 Gain of a Half-Wave Dipole
371(1)
12.5.3 Summary of the Properties of a Half-Wave Dipole
372(1)
12.6 Antenna Arrays
372(4)
12.7 Mutual Impedance
376(2)
12.8 Arrays Containing Parasitic Elements
378(5)
12.9 Yagi-Uda Antenna
383(3)
12.10 Log-Periodic Array
386(1)
12.11 Loop Antenna
387(4)
12.12 Planar Antennas
391(12)
12.12.1 Linearly Polarized Patch Antennas
391(6)
12.12.2 Circularly Polarized Planar Antennas
397(6)
12.13 Horn Antennas
403(4)
12.14 Parabolic Reflector Antennas
407(3)
12.15 Slot Radiators
410(3)
12.16 Supplementary Problems
413(3)
Appendix 12.A Microstrip Design Graphs for Substrates with er = 2.3
416(1)
References
417(2)
13 Power Amplifiers and Distributed Amplifiers
419(26)
13.1 Introduction
419(1)
13.2 Power Amplifiers
420(12)
13.2.1 Overview of Power Amplifier Parameters
420(1)
13.2.1.1 Power Gain
420(1)
13.2.1.2 Power Added Efficiency
420(1)
13.2.1.3 Input and Output Impedances
420(1)
13.2.2 Distortion
420(3)
13.2.2.1 Gain Compression
423(1)
13.2.2.2 Third-Order Intercept Point
424(2)
13.2.3 Linearization
426(1)
13.2.3.1 Pre-Distortion
427(1)
13.2.3.2 Negative Feedback
428(1)
13.2.3.3 Feed-Forward Linearization
428(1)
13.2.4 Power Combining
429(2)
13.2.5 Doherty Amplifier
431(1)
13.3 Load Matching of Power Amplifiers
432(2)
13.4 Distributed Amplifiers
434(7)
13.4.1 Description and Principle of Operation
434(3)
13.4.2 Analysis
437(4)
13.5 Developments in Materials and Packaging for Power Amplifiers
441(1)
References
442(3)
14 Receivers and Sub-Systems
445(42)
14.1 Introduction
445(1)
14.2 Receiver Noise Sources
445(8)
14.2.1 Thermal Noise
445(7)
14.2.2 Semiconductor Noise
452(1)
14.3 Noise Measures
453(3)
14.3.1 Noise Figure (F)
453(2)
14.3.2 Noise Temperature (Te)
455(1)
14.4 Noise Figure of Cascaded Networks
456(2)
14.5 Antenna Noise Temperature
458(1)
14.6 System Noise Temperature
459(1)
14.7 Noise Figure of a Matched Attenuator at Temperature T0
459(2)
14.8 Superhet Receiver
461(9)
14.8.1 Single-Conversion Superhet Receiver
461(1)
14.8.2 Image Frequency
462(1)
14.8.3 Key Figures of Merit for a Superhet Receiver
463(1)
14.8.4 Double-Conversion Superhet Receiver
464(1)
14.8.5 Noise Budget Graph for a Superhet Receiver
465(5)
14.9 Mixers
470(7)
14.9.1 Basic Mixer Principles
470(1)
14.9.2 Mixer Parameters
470(1)
14.9.3 Active and Passive Mixers
471(1)
14.9.4 Single-Ended Diode Mixer
471(2)
14.9.5 Single Balanced Mixer
473(1)
14.9.6 Double Balanced Mixer
473(2)
14.9.7 Active FET Mixers
475(2)
14.10 Supplementary Problems
477(3)
Appendix 14.A Appendices
480(5)
14.A.1 Error Function Table
480(1)
14.A.2 Measurement of Noise Figure
481(4)
References
485(2)
Answers to Selected Supplementary Problems 487(10)
Index 497
Dr. Charles E. Free was formerly a Reader in Microwave Technology at the University of Surrey, United Kingdom. He specializes in RF electronics and microwave engineering and has contributed to approximately 150 scholarly publications.

Professor Colin S. Aitchison was previously Chair of the European Microwave Conference and has contributed to approximately 185 scholarly publications. He was formerly Dean of the Technology faculty at Brunel University, United Kingdom.