Muutke küpsiste eelistusi

Robust and Optimal Control: A Two-port Framework Approach [Kõva köide]

  • Formaat: Hardback, 336 pages, kõrgus x laius: 235x155 mm, kaal: 7143 g, 128 Illustrations, color; 95 Illustrations, black and white; XVI, 336 p. 223 illus., 128 illus. in color. With online files/update., 1 Hardback
  • Sari: Advances in Industrial Control
  • Ilmumisaeg: 21-Jan-2014
  • Kirjastus: Springer London Ltd
  • ISBN-10: 1447162560
  • ISBN-13: 9781447162568
Teised raamatud teemal:
  • Kõva köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 336 pages, kõrgus x laius: 235x155 mm, kaal: 7143 g, 128 Illustrations, color; 95 Illustrations, black and white; XVI, 336 p. 223 illus., 128 illus. in color. With online files/update., 1 Hardback
  • Sari: Advances in Industrial Control
  • Ilmumisaeg: 21-Jan-2014
  • Kirjastus: Springer London Ltd
  • ISBN-10: 1447162560
  • ISBN-13: 9781447162568
Teised raamatud teemal:

A Two-port Framework for Robust and Optimal Control introduces an alternative approach to robust and optimal controller synthesis procedures for linear, time-invariant systems, based on the two-port system widespread in electrical engineering. The novel use of the two-port system in this context allows straightforward engineering-oriented solution-finding procedures to be developed, requiring no mathematics beyond linear algebra. A chain-scattering description provides a unified framework for constructing the stabilizing controller set and for synthesizing H2 optimal andH8 sub-optimal controllers. Simple yet illustrative examples explain each step.

A Two-port Framework for Robust and Optimal Control features:

· a hands-on, tutorial-style presentation giving the reader the opportunity to repeat the designs presented and easily to modify them for their own programs;

· an abundance of examples illustrating the most important steps in robust and optimal design; and

· end-of-chapter exercises.

To further demonstrate the proposed approaches, in the last chapter an application case study is presented which demonstrates the use of the framework in a real-world control system design and helps the reader quickly move on with their own challenges. MATLAB® codes used in examples throughout the book and solutions to selected exercise questions are available for download.

The text will have particular resonance for researchers in control with an electrical engineering background, who wish to avoid spending excessive time in learning complex mathematical, theoretical developments but need to know how to deal with robust and optimal control synthesis problems.

Please see [ http://km.emotors.ncku.edu.tw/class/hw1.html] for solutions to the exercises provided in this book.

Arvustused

From the book reviews:

This monograph constitutes a bridge between control and circuits theories and as such deserves for attention. The book is interesting for researchers and students who extends their knowledge on various control approaches but fail from that they have not listen a good modern circuit course. the book is worth to read. (Krzysztof Gakowski, zbMATH, Vol. 1296, 2014)

1 Introduction 1(6)
References
5(2)
2 Preliminaries 7(30)
2.1 Linear Algebra and Matrix Theory
7(9)
2.1.1 Vectors and Matrices
7(3)
2.1.2 Linear Spaces
10(1)
2.1.3 Eigenvalues and Eigenvectors
11(1)
2.1.4 Matrix Inversion and Pseudoinverse
12(2)
2.1.5 Vector Norms and Matrix Norms
14(1)
2.1.6 Singular Value Decomposition
15(1)
2.2 Function Spaces and Signals
16(6)
2.2.1 Function Spaces
16(3)
2.2.2 Norms for Signals and Systems
19(3)
2.3 Linear System Theory
22(9)
2.3.1 Linear Systems
22(1)
2.3.2 State Similarity Transformation
23(1)
2.3.3 Stability, Controllability, and Observability
24(2)
2.3.4 Minimal State-Space Realization
26(1)
2.3.5 State-Space Algebra
27(1)
2.3.6 State-Space Formula for Parallel Systems
28(1)
2.3.7 State-Space Formula for Cascaded Systems
29(1)
2.3.8 State-Space Formula for Similarity Transformation
29(2)
2.4 Linear Fractional Transformations and Chain Scattering-Matrix Description
31(3)
Exercises
34(1)
References
35(2)
3 Two-Port Networks 37(28)
3.1 One-Port and Two-Port Networks
37(3)
3.2 Impedance and Admittance Parameters (Z and Y Parameters)
40(3)
3.3 Hybrid Parameters (H Parameters)
43(1)
3.4 Transmission Parameters (ABCD Parameters)
44(4)
3.5 Scattering Parameters (S Parameters)
48(3)
3.6 Chain Scattering Parameters (T Parameters)
51(3)
3.7 Conversions Between (ABCD) and (S, T) Matrix Parameters
54(1)
3.8 Lossless Networks
55(6)
Exercises
61(2)
References
63(2)
4 Linear Fractional Transformations 65(34)
4.1 Linear Fractional Transformations
65(4)
4.2 Application of LFT in State-Space Realizations
69(5)
4.3 Examples of Determining LFT Matrices
74(6)
4.3.1 Canonical Form
75(1)
4.3.2 Cascade Form
76(1)
4.3.3 Parallel Form
76(4)
4.4 Relationship Between Mason's Gain Formulae and LFT
80(9)
4.5 LFT Description and Feedback Controllers
89(3)
4.6 Inner and Co-inner Systems
92(3)
Exercises
95(2)
References
97(2)
5 Chain Scattering Descriptions 99(46)
5.1 CSD Definitions and Manipulations
99(4)
5.2 Cascaded Connection of Two CSD Matrices
103(4)
5.3 Transformation from LFT to CSD Matrix
107(3)
5.4 Transformation from LFT to Cascaded CSDs
110(5)
5.5 Transformation from CSD to LFT matrix
115(6)
5.6 Applications of CSDs in State-Space Realizations
121(6)
5.7 An Application of CSDs to Similarity Transformations
127(1)
5.8 State-Space Formulae of CSD Matrix Transformed from LFT Matrix
128(3)
5.9 State-Space Formulae of LFT Matrix Transformed from CSD Matrix
131(3)
5.10 Star Connection
134(2)
5.11 J-Lossless and Dual J-Lossless Systems
136(5)
Exercises
141(2)
References
143(2)
6 Coprime Factorizations 145(26)
6.1 Coprimeness and Coprime Factorization
145(3)
6.2 Coprime Factorization over RHinfinity
148(20)
6.3 Normalized Coprime Factorization
168(2)
Exercises
170(1)
References
170(1)
7 Algebraic Riccati Equations and Spectral Factorizations 171(40)
7.1 Algebraic Riccati Equations
171(7)
7.2 Similarity Transformation of Hamiltonian Matrices
178(5)
7.3 Lyapunov Equation
183(2)
7.4 State-Space Formulae for Spectral Factorizations Using Coprime Factorization Approach
185(23)
7.4.1 Spectral Factorization Case I
188(10)
7.4.2 Spectral Factorization Case II
198(5)
7.4.3 Spectral Factorization Case III
203(5)
Exercises
208(1)
References
209(2)
8 CSD Approach to Stabilization Control and H2 Optimal Control 211(56)
8.1 Introduction
212(1)
8.2 Characterization of All Stabilizing Controllers
213(7)
8.2.1 Method I: CSDr CSDl Using a Right CSD Coupled with a Left CSD
214(3)
8.2.2 Method II: CSDl CSDr Using a Left CSD Coupled with a Right CSD
217(3)
8.3 State-Space Formulae of Stabilizing Controllers
220(7)
8.3.1 Method I: CSDr CSDl
220(4)
8.3.2 Method II: CSD1 CSDr,
224(3)
8.4 Example of Finding Stabilizing Controllers
227(8)
8.4.1 Method I: CSDr CSDl Using a Right CSD Associated with a Left CSD
228(4)
8.4.2 Method II: CSDl CSDr Using a Left CSD Associated with a Right CSD
232(3)
8.5 Stabilization of Special SCC Formulations
235(12)
8.5.1 Disturbance Feedforward (DF) Case
237(1)
8.5.2 Full Information (FI) Case
238(1)
8.5.3 State Feedback (SF) Case
239(1)
8.5.4 Output Estimation (OE) Case
240(2)
8.5.5 Full Control (FC) Case
242(1)
8.5.6 Output Injection (OI) Case
243(4)
8.6 Optimal H2 Controller
247(5)
8.6.1 Method I: Using a Right CSD Associated with a Left One
248(3)
8.6.2 Method II: Using a Left CSD Associated with a Right One
251(1)
8.7 Example of the Output Feedback H2 Optimal Control Problem
252(5)
8.7.1 A Numerical Example
254(3)
8.8 Example of LQR Controller
257(2)
8.9 More Numerical Examples
259(5)
8.10 Summary
264(1)
References
264(3)
9 A CSD Approach to H-Infinity Controller Synthesis 267(36)
9.1 Hoo Control Problem
268(6)
9.1.1 Method I: CSDr CSDl Right CSD Coupled with Left CSD
269(2)
9.1.2 Method II: CSDl CSDr Left CSD Coupled with Right CSD
271(3)
9.2 State-Space Formulae of HInfinity Controllers
274(7)
9.2.1 Method I: CSDr CSDl
274(4)
9.2.2 Method II: CSDl CSDl
278(3)
9.3 Hinfinity Solution of Special SCC Formulations
281(9)
9.3.1 Disturbance Feedforward (DF) Problem
281(2)
9.3.2 Full Information (FI) Problem
283(2)
9.3.3 State Feedback (SF) Problem
285(1)
9.3.4 Output Estimation (OE) Problem
285(2)
9.3.5 Full Control (FC) Problem
287(2)
9.3.6 Output Injection (OI) Problem
289(1)
9.4 Hinfinity Controller Synthesis with Coprime Factor Perturbations
290(11)
9.4.1 Robust Stabilization Problem of Left Coprime Factorization Case
291(5)
9.4.2 Robust Stabilization Problem of Right Coprime Factor Case
296(5)
Exercises
301(1)
References
301(2)
10 Design Examples 303(30)
10.1 Mathematical Models of DC Servomotor
303(1)
10.2 Two-Port Chain Description Approach to Estimation of Mechanical Loading
304(8)
10.3 Coprime Factorization Approach to System Identification
312(2)
10.4 Hoc, Robust Controller Design for Speed Control
314(17)
10.4.1 PDF Controller
314(7)
10.4.2 PDFF Controller
321(2)
10.4.3 Coprime Factorization Approach to Advanced PDFF Controller
323(8)
10.5 Summary
331(1)
References
331(2)
Index 333