Preface |
|
ix | |
Preface to the 1st edition |
|
xi | |
Acknowledgments |
|
xiii | |
Introduction |
|
1 | (4) |
|
|
3 | (2) |
|
1 Mathematical tools of robustness |
|
|
5 | (20) |
|
|
5 | (5) |
|
1.2 Illustration on statistical estimation |
|
|
10 | (1) |
|
1.3 Statistical functional |
|
|
11 | (1) |
|
|
12 | (1) |
|
1.5 Some distances of probability measures |
|
|
13 | (2) |
|
1.6 Relations between distances |
|
|
15 | (1) |
|
1.7 Differentiable statistical functionals |
|
|
16 | (1) |
|
|
17 | (2) |
|
|
19 | (1) |
|
1.10 Hadamard (compact) derivative |
|
|
20 | (1) |
|
1.11 Large sample distribution of empirical functional |
|
|
20 | (2) |
|
1.12 Problems and complements |
|
|
22 | (3) |
|
2 Characteristics of robustness |
|
|
25 | (18) |
|
|
25 | (1) |
|
2.2 Discretized form of influence function |
|
|
26 | (2) |
|
2.3 Qualitative robustness |
|
|
28 | (2) |
|
2.4 Quantitative characteristics of robustness based on influence function |
|
|
30 | (1) |
|
|
31 | (2) |
|
|
33 | (1) |
|
2.7 Tail-behavior measure of a statistical estimator |
|
|
34 | (5) |
|
2.8 Variance of asymptotic normal distribution |
|
|
39 | (1) |
|
2.9 Available "robust" packages in R |
|
|
39 | (1) |
|
2.10 Problems and complements |
|
|
40 | (3) |
|
3 Estimation of real parameter |
|
|
43 | (50) |
|
|
43 | (2) |
|
3.2 M-estimator of location |
|
|
45 | (8) |
|
3.3 Finite sample minimax property of M-estimator |
|
|
53 | (5) |
|
3.4 Moment convergence of M-estimators |
|
|
58 | (3) |
|
3.5 Studentized M-estimators |
|
|
61 | (7) |
|
3.6 S- and τ-estimators, MM-estimators |
|
|
68 | (3) |
|
|
71 | (8) |
|
3.8 Moment convergence of L-estimators |
|
|
79 | (2) |
|
3.9 Sequential M- and L-estimators, minimizing observation costs |
|
|
81 | (2) |
|
|
83 | (3) |
|
|
86 | (4) |
|
3.12 Problems and complements |
|
|
90 | (3) |
|
|
93 | (52) |
|
|
93 | (2) |
|
|
95 | (11) |
|
|
106 | (9) |
|
|
115 | (3) |
|
4.5 R-estimators, GR-estimators |
|
|
118 | (3) |
|
4.6 L-estimators, regression quantiles |
|
|
121 | (4) |
|
4.7 Regression rank scores |
|
|
125 | (3) |
|
4.8 Robust scale statistics |
|
|
128 | (3) |
|
4.9 Estimators with high breakdown points |
|
|
131 | (3) |
|
4.10 S-estimators and MM-estimators |
|
|
134 | (3) |
|
|
137 | (5) |
|
4.12 Problems and complements |
|
|
142 | (3) |
|
|
145 | (28) |
|
5.1 Concept of multivariate symmetry |
|
|
145 | (1) |
|
5.2 Multivariate location estimation |
|
|
146 | (1) |
|
5.3 Admissibility and shrinkage |
|
|
147 | (5) |
|
5.4 Visualization of multivariate data in R |
|
|
152 | (4) |
|
5.5 Multivariate regression estimation |
|
|
156 | (1) |
|
5.6 Affine invariance and equivariance, maximal invariants |
|
|
157 | (4) |
|
5.7 Unbiasedness of two-sample nonparametric tests |
|
|
161 | (9) |
|
5.8 Problems and complements |
|
|
170 | (3) |
|
6 Large sample and finite sample behavior of robust estimators |
|
|
173 | (28) |
|
|
173 | (2) |
|
|
175 | (2) |
|
|
177 | (2) |
|
|
179 | (1) |
|
6.5 Interrelationships of M-, L- and R-estimators |
|
|
179 | (4) |
|
6.6 Estimation under contaminated distribution |
|
|
183 | (3) |
|
6.7 Possible non-admissibility under finite-sample |
|
|
186 | (2) |
|
6.8 Newton-Raphson iterations of estimating equations |
|
|
188 | (3) |
|
6.9 Adaptive combination of estimation procedures |
|
|
191 | (5) |
|
6.10 Numerical illustration of LAD and LS regression |
|
|
196 | (2) |
|
6.11 Problems and complements |
|
|
198 | (3) |
|
7 Robust and nonparametric procedures in measurement error models |
|
|
201 | (18) |
|
|
201 | (1) |
|
7.2 Types of measurement errors, misspecification and violation of assumptions |
|
|
202 | (2) |
|
7.3 Measurement errors in nonparametric testing |
|
|
204 | (7) |
|
7.4 Measurement errors in nonparametric estimation |
|
|
211 | (5) |
|
7.5 Problems and complements |
|
|
216 | (3) |
Appendix A Authors' own procedures in R |
|
219 | (8) |
Bibliography |
|
227 | (20) |
Author index |
|
247 | (4) |
Subject index |
|
251 | |