|
1 SMAA in Robustness Analysis |
|
|
1 | (20) |
|
|
|
|
1 | (2) |
|
1.2 Problem Representation in SMAA |
|
|
3 | (6) |
|
1.2.1 Stochastic MCDA Problem |
|
|
3 | (1) |
|
1.2.2 Generic SMAA Simulation |
|
|
4 | (1) |
|
|
5 | (1) |
|
1.2.4 Preference Information |
|
|
6 | (1) |
|
|
7 | (2) |
|
|
9 | (1) |
|
1.3 Robustness with Imprecise Criteria and Weights |
|
|
9 | (6) |
|
1.3.1 Rank Acceptability Indices |
|
|
10 | (2) |
|
1.3.2 Pairwise Winning Indices |
|
|
12 | (1) |
|
1.3.3 Central Weight Vectors |
|
|
13 | (1) |
|
|
13 | (2) |
|
1.4 Robustness with Respect to Model Structure |
|
|
15 | (1) |
|
1.5 Recent Developments of SMAA |
|
|
16 | (2) |
|
|
18 | (3) |
|
|
19 | (2) |
|
2 Data-Driven Robustness Analysis for Multicriteria Classification Problems Using Preference Disaggregation Approaches |
|
|
21 | (18) |
|
|
|
|
21 | (2) |
|
2.2 Preference Disaggregation for Multicriteria Classification |
|
|
23 | (5) |
|
|
23 | (2) |
|
|
25 | (3) |
|
2.3 Data-Driven Robustness Indicators for Multicriteria Classification Problems |
|
|
28 | (2) |
|
|
30 | (5) |
|
2.5 Conclusions and Future Research |
|
|
35 | (4) |
|
|
35 | (4) |
|
3 Robustness for Adversarial Risk Analysis |
|
|
39 | (20) |
|
|
|
|
|
|
39 | (2) |
|
|
41 | (1) |
|
|
42 | (5) |
|
3.3.1 Game Theoretic Solution and Robustness |
|
|
42 | (2) |
|
3.3.2 ARA Solution and Robustness |
|
|
44 | (3) |
|
3.3.3 A Full Robust Solution |
|
|
47 | (1) |
|
|
47 | (4) |
|
3.4.1 Game Theoretic Solution |
|
|
48 | (1) |
|
3.4.2 ARA Solution and Robustness |
|
|
49 | (2) |
|
|
51 | (4) |
|
3.5.1 Game Theoretic Approach |
|
|
52 | (1) |
|
3.5.2 Robustness of the Game Theoretic Solution |
|
|
53 | (1) |
|
|
54 | (1) |
|
3.5.4 Robustness of the ARA Solution |
|
|
55 | (1) |
|
|
55 | (4) |
|
|
57 | (2) |
|
4 From Statistical Decision Theory to Robust Optimization: A Maximin Perspective on Robust Decision-Making |
|
|
59 | (30) |
|
|
|
59 | (1) |
|
4.2 The Fundamental Decision Problem |
|
|
60 | (2) |
|
4.3 Wald's Maximin Paradigm |
|
|
62 | (1) |
|
4.4 Maximin Models at a Glance |
|
|
63 | (3) |
|
|
64 | (1) |
|
|
65 | (1) |
|
4.4.3 A Constrained Optimization Perspective |
|
|
65 | (1) |
|
|
66 | (4) |
|
|
70 | (7) |
|
4.6.1 Worst-Case-Based Robustness |
|
|
71 | (1) |
|
4.6.2 How Bad Should Worst Be? |
|
|
72 | (1) |
|
4.6.3 Global vs Local Robustness |
|
|
73 | (4) |
|
4.7 A Robust Decision-Making Perspective |
|
|
77 | (6) |
|
4.7.1 Robust Optimization |
|
|
77 | (2) |
|
|
79 | (1) |
|
4.7.3 Irresponsible Decision-Making |
|
|
80 | (1) |
|
4.7.4 A Probabilistic Perspective on Worst-Case Analysis |
|
|
81 | (2) |
|
4.8 Can Wald's Maximin Paradigm Save the World? |
|
|
83 | (6) |
|
|
85 | (4) |
|
5 The State of Robust Optimization |
|
|
89 | (24) |
|
|
|
|
89 | (2) |
|
5.2 Theory of Robust Optimization |
|
|
91 | (7) |
|
5.2.1 Connection with Stochastic Optimization |
|
|
91 | (3) |
|
5.2.2 Nonlinear Optimization |
|
|
94 | (1) |
|
5.2.3 Multiple Objectives and Pareto Optimization |
|
|
95 | (1) |
|
5.2.4 Multi-Stage Decision-Making |
|
|
96 | (2) |
|
5.3 Application Areas of Robust Optimization |
|
|
98 | (9) |
|
5.3.1 Classical Logistics Problems |
|
|
98 | (2) |
|
|
100 | (1) |
|
5.3.3 Supply Chain Management |
|
|
101 | (1) |
|
5.3.4 Industry-Specific Applications |
|
|
102 | (1) |
|
|
103 | (1) |
|
5.3.6 Machine Learning and Statistics |
|
|
104 | (1) |
|
|
104 | (1) |
|
|
105 | (2) |
|
5.4 Conclusions and Guidelines for Implementation |
|
|
107 | (6) |
|
|
108 | (5) |
|
6 Robust Discrete Optimization Under Discrete and Interval Uncertainty: A Survey |
|
|
113 | (32) |
|
|
|
|
113 | (4) |
|
6.2 Robust Min-Max (Regret) Problems |
|
|
117 | (10) |
|
6.2.1 Using the Minmax Criterion |
|
|
117 | (3) |
|
6.2.2 Using the Minmax Regret Criterion |
|
|
120 | (7) |
|
6.3 Extensions of the Minmax Approach |
|
|
127 | (5) |
|
6.3.1 Using the OWA Criterion |
|
|
127 | (3) |
|
6.3.2 Using the WOWA Criterion |
|
|
130 | (2) |
|
6.4 Robust Optimization with Incremental Recourse |
|
|
132 | (4) |
|
6.4.1 Discrete Uncertainty Representation |
|
|
134 | (1) |
|
6.4.2 Interval Uncertainty Representation |
|
|
135 | (1) |
|
6.5 Robust Two-Stage Problems |
|
|
136 | (3) |
|
6.5.1 Discrete Uncertainty Representation |
|
|
137 | (1) |
|
6.5.2 Interval Uncertainty Representation |
|
|
138 | (1) |
|
|
139 | (6) |
|
|
140 | (5) |
|
7 Performance Analysis in Robust Optimization |
|
|
145 | (26) |
|
|
|
|
145 | (1) |
|
7.2 Notations and Definitions |
|
|
146 | (3) |
|
|
146 | (1) |
|
7.2.2 The Uncertain Assignment Problem |
|
|
147 | (1) |
|
7.2.3 The Uncertain Knapsack Problem |
|
|
148 | (1) |
|
7.3 Approaches to Robust Optimization |
|
|
149 | (10) |
|
|
149 | (2) |
|
7.3.2 Bounded Uncertainty |
|
|
151 | (1) |
|
7.3.3 Ellipsoidal Uncertainty |
|
|
152 | (1) |
|
|
153 | (4) |
|
7.3.5 Recoverable Robustness |
|
|
157 | (1) |
|
|
158 | (1) |
|
7.4 Frameworks to Evaluate Robust Solutions |
|
|
159 | (2) |
|
7.4.1 The Price of Robustness |
|
|
159 | (1) |
|
|
160 | (1) |
|
|
160 | (1) |
|
7.4.4 The Sampled Scenario Curve |
|
|
160 | (1) |
|
7.4.5 The Scenario Curve with Recovery |
|
|
161 | (1) |
|
|
161 | (10) |
|
|
162 | (2) |
|
|
164 | (5) |
|
|
169 | (2) |
|
8 Robust-Soft Solutions in Linear Optimization Problems with Fuzzy Parameters |
|
|
171 | (20) |
|
|
|
171 | (1) |
|
8.2 Blind Spots in Fuzzy Programming Approaches |
|
|
172 | (6) |
|
8.2.1 Linear Program with Fuzzy Objective Function Coefficients |
|
|
172 | (1) |
|
8.2.2 Solution Comparison by Objective Function Values |
|
|
173 | (3) |
|
8.2.3 Necessity and Possibility Measure Optimization |
|
|
176 | (2) |
|
8.3 Optimization Approaches |
|
|
178 | (1) |
|
8.3.1 Possible and Necessary Optimal Solutions |
|
|
178 | (1) |
|
8.3.2 Robust-Soft Optimal Solutions |
|
|
178 | (1) |
|
8.4 Solution Algorithms Under Given Fuzzy Goals |
|
|
179 | (5) |
|
8.5 Solving the Subproblem |
|
|
184 | (3) |
|
8.6 Solution Algorithms Under Unknown Goals |
|
|
187 | (2) |
|
|
189 | (2) |
|
|
189 | (2) |
|
9 Robust Machine Scheduling Based on Group of Permutable Jobs |
|
|
191 | (30) |
|
|
|
|
|
|
9.1 Introduction to Scheduling and Robust Scheduling |
|
|
193 | (8) |
|
9.1.1 Scheduling Problems |
|
|
193 | (3) |
|
9.1.2 Robustness in Scheduling |
|
|
196 | (2) |
|
9.1.3 Feasible Schedules and the Absolute Robustness Problem |
|
|
198 | (1) |
|
9.1.4 The Standard Solution Representation for (Robust) Disjunctive Scheduling |
|
|
199 | (2) |
|
9.2 Groups of Permutable Jobs: A Solution Structure for Robust Scheduling |
|
|
201 | (8) |
|
9.2.1 Groups of Permutable Jobs: A Flexible Solution Representation |
|
|
202 | (2) |
|
9.2.2 Combinatorial Optimization Problems on Group Sequences |
|
|
204 | (5) |
|
9.3 Solution Methods: A Recoverable Robust Approach Based on Groups of Permutable Operations |
|
|
209 | (5) |
|
|
210 | (1) |
|
9.3.2 Tabu Search Algorithms |
|
|
211 | (1) |
|
9.3.3 Solution Algorithms for the Standard Robust Scheduling Method |
|
|
212 | (1) |
|
9.3.4 Computational Experiments |
|
|
213 | (1) |
|
9.4 Using Groups of Permutable Operations in an Industrial Context |
|
|
214 | (7) |
|
9.4.1 Heuristics for the Reactive Phase of Groups of Permutable Operations |
|
|
215 | (1) |
|
9.4.2 A Multi-Criteria Decision Support System (DSS) for Groups of Permutable Operations |
|
|
216 | (3) |
|
|
219 | (2) |
|
10 How Robust is a Robust Policy? Comparing Alternative Robustness Metrics for Robust Decision-Making |
|
|
221 | (18) |
|
|
|
|
|
222 | (1) |
|
10.2 Measuring Robustness |
|
|
223 | (2) |
|
|
225 | (4) |
|
|
226 | (2) |
|
10.3.2 Formulating the Problem |
|
|
228 | (1) |
|
|
229 | (4) |
|
|
233 | (6) |
|
|
236 | (3) |
|
11 Developing Robust Climate Policies: A Fuzzy Cognitive Map Approach |
|
|
239 | (26) |
|
|
|
|
240 | (2) |
|
11.2 Fuzzy Cognitive Maps |
|
|
242 | (3) |
|
11.3 The Methodological Framework |
|
|
245 | (11) |
|
11.3.1 Determining the Group of Stakeholders |
|
|
246 | (1) |
|
11.3.2 Designing the Cognitive Map |
|
|
247 | (3) |
|
11.3.3 Inferring Causal Relation Weights |
|
|
250 | (1) |
|
11.3.4 Exploring the Time Dimension |
|
|
251 | (1) |
|
11.3.5 Quantifying Concepts |
|
|
252 | (2) |
|
11.3.6 Selecting Configuration Parameters |
|
|
254 | (2) |
|
11.3.7 Running Simulations |
|
|
256 | (1) |
|
|
256 | (2) |
|
|
258 | (7) |
|
|
260 | (5) |
|
12 Robust Optimization Approaches to Single Period Portfolio Allocation Problem |
|
|
265 | (20) |
|
|
|
|
265 | (2) |
|
12.2 Robust Portfolio Management Model |
|
|
267 | (2) |
|
12.3 Defining Uncertainty Sets |
|
|
269 | (1) |
|
12.4 Derivation of Robust Counterpart |
|
|
269 | (4) |
|
12.5 Data-Driven Robust Optimization |
|
|
273 | (2) |
|
12.6 Distributionally Robust Optimization |
|
|
275 | (2) |
|
12.7 Robust Risk Measures |
|
|
277 | (3) |
|
|
280 | (5) |
|
|
280 | (5) |
|
13 Portfolio Optimization with Second-Order Stochastic Dominance Constraints and Portfolios Dominating Indices |
|
|
285 | (14) |
|
|
|
|
|
286 | (1) |
|
13.2 Second Order Stochastic Dominance (SSD) |
|
|
286 | (2) |
|
13.2.1 SSD Constraints for a Discrete Set of Scenarios |
|
|
287 | (1) |
|
13.2.2 Portfolio Optimization Problem with SSD Constraints |
|
|
287 | (1) |
|
13.3 Algorithm for Portfolio Optimization Problem with SSD Constraints |
|
|
288 | (2) |
|
13.3.1 Removing Redundant Constraints |
|
|
288 | (1) |
|
13.3.2 Cutting Plane Algorithm |
|
|
288 | (1) |
|
13.3.3 PSG Code for Optimization with SSD Constraints |
|
|
289 | (1) |
|
|
290 | (7) |
|
13.4.1 Estimation of Time-Varying Covariance Matrix |
|
|
291 | (1) |
|
13.4.2 Comparing Numerical Performance of Various Portfolio Settings |
|
|
291 | (1) |
|
13.4.3 Out-of-Sample Simulation |
|
|
292 | (5) |
|
|
297 | (2) |
|
|
298 | (1) |
|
14 Robust DEA Approaches to Performance Evaluation of Olive Oil Production Under Uncertainty |
|
|
299 | (20) |
|
|
|
|
299 | (2) |
|
|
301 | (3) |
|
14.2.1 Deterministic DEA Model |
|
|
301 | (1) |
|
14.2.2 Imprecise DEA Model |
|
|
302 | (2) |
|
|
304 | (3) |
|
14.3.1 Robust Linear Optimization |
|
|
304 | (2) |
|
|
306 | (1) |
|
14.4 Case Study: Performance of Olive Oil Growing Farms |
|
|
307 | (1) |
|
14.5 Computational Results |
|
|
308 | (9) |
|
14.5.1 Performance Comparison of Imprecise and Robust DEA Approaches |
|
|
309 | (5) |
|
14.5.2 Impact of Model Parameters |
|
|
314 | (3) |
|
|
317 | (2) |
|
|
318 | (1) |
Index |
|
319 | |