Foreword |
|
xiii | |
Preface |
|
xv | |
About the Authors |
|
xix | |
|
1 Introduction to Pattern Recognition and Data Mining |
|
|
1 | (20) |
|
|
1 | (2) |
|
|
3 | (3) |
|
|
4 | (1) |
|
|
4 | (1) |
|
1.2.3 Classification and Clustering |
|
|
5 | (1) |
|
|
6 | (3) |
|
1.3.1 Tasks, Tools, and Applications |
|
|
7 | (1) |
|
1.3.2 Pattern Recognition Perspective |
|
|
8 | (1) |
|
1.4 Relevance of Soft Computing |
|
|
9 | (1) |
|
1.5 Scope and Organization of the Book |
|
|
10 | (11) |
|
|
14 | (7) |
|
2 Rough-Fuzzy Hybridization and Granular Computing |
|
|
21 | (26) |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
23 | (3) |
|
2.4 Emergence of Rough-Fuzzy Computing |
|
|
26 | (3) |
|
|
26 | (1) |
|
2.4.2 Computational Theory of Perception and ƒ-Granulation |
|
|
26 | (2) |
|
2.4.3 Rough-Fuzzy Computing |
|
|
28 | (1) |
|
2.5 Generalized Rough Sets |
|
|
29 | (1) |
|
|
30 | (6) |
|
2.7 Conclusion and Discussion |
|
|
36 | (11) |
|
|
37 | (10) |
|
3 Rough-Fuzzy Clustering: Generalized c-Means Algorithm |
|
|
47 | (38) |
|
|
47 | (2) |
|
3.2 Existing c-Means Algorithms |
|
|
49 | (4) |
|
|
49 | (1) |
|
|
50 | (1) |
|
3.2.3 Possibilistic c-Means |
|
|
51 | (1) |
|
|
52 | (1) |
|
3.3 Rough-Fuzzy-Possibilistic c-Means |
|
|
53 | (8) |
|
|
54 | (1) |
|
|
55 | (1) |
|
3.3.3 Fundamental Properties |
|
|
56 | (1) |
|
3.3.4 Convergence Condition |
|
|
57 | (2) |
|
3.3.5 Details of the Algorithm |
|
|
59 | (1) |
|
3.3.6 Selection of Parameters |
|
|
60 | (1) |
|
3.4 Generalization of Existing c-Means Algorithms |
|
|
61 | (4) |
|
3.4.1 RFCM: Rough-Fuzzy c-Means |
|
|
61 | (1) |
|
3.4.2 RPCM: Rough-Possibilistic c-Means |
|
|
62 | (1) |
|
|
63 | (1) |
|
3.4.4 FPCM: Fuzzy-Possibilistic c-Means |
|
|
64 | (1) |
|
|
64 | (1) |
|
3.4.6 PCM: Possibilistic c-Means |
|
|
64 | (1) |
|
|
65 | (1) |
|
3.5 Quantitative Indices for Rough-Fuzzy Clustering |
|
|
65 | (3) |
|
3.5.1 Average Accuracy, α Index |
|
|
65 | (2) |
|
3.5.2 Average Roughness, Index |
|
|
67 | (1) |
|
3.5.3 Accuracy of Approximation, α Index |
|
|
67 | (1) |
|
3.5.4 Quality of Approximation, γ Index |
|
|
68 | (1) |
|
|
68 | (12) |
|
3.6.1 Quantitative Indices |
|
|
68 | (1) |
|
3.6.2 Synthetic Data Set: X32 |
|
|
69 | (1) |
|
3.6.3 Benchmark Data Sets |
|
|
70 | (10) |
|
3.7 Conclusion and Discussion |
|
|
80 | (5) |
|
|
81 | (4) |
|
4 Rough-Fuzzy Granulation and Pattern Classification |
|
|
85 | (32) |
|
|
85 | (2) |
|
4.2 Pattern Classification Model |
|
|
87 | (8) |
|
4.2.1 Class-Dependent Fuzzy Granulation |
|
|
88 | (2) |
|
4.2.2 Rough-Set-Based Feature Selection |
|
|
90 | (5) |
|
4.3 Quantitative Measures |
|
|
95 | (2) |
|
|
95 | (1) |
|
4.3.2 Classification Accuracy, Precision, and Recall |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
97 | (1) |
|
4.4 Description of Data Sets |
|
|
97 | (3) |
|
4.4.1 Completely Labeled Data Sets |
|
|
98 | (1) |
|
4.4.2 Partially Labeled Data Sets |
|
|
99 | (1) |
|
|
100 | (12) |
|
4.5.1 Statistical Significance Test |
|
|
102 | (1) |
|
4.5.2 Class Prediction Methods |
|
|
103 | (1) |
|
4.5.3 Performance on Completely Labeled Data |
|
|
103 | (7) |
|
4.5.4 Performance on Partially Labeled Data |
|
|
110 | (2) |
|
4.6 Conclusion and Discussion |
|
|
112 | (5) |
|
|
114 | (3) |
|
5 Fuzzy-Rough Feature Selection using ƒ-Information Measures |
|
|
117 | (44) |
|
|
117 | (3) |
|
|
120 | (1) |
|
5.3 Information Measure on Fuzzy Approximation Spaces |
|
|
121 | (4) |
|
5.3.1 Fuzzy Equivalence Partition Matrix and Entropy |
|
|
121 | (2) |
|
|
123 | (2) |
|
5.4 ƒ-Information and Fuzzy Approximation Spaces |
|
|
125 | (4) |
|
|
125 | (1) |
|
|
126 | (1) |
|
|
127 | (1) |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
128 | (1) |
|
5.5 ƒ-Information for Feature Selection |
|
|
129 | (4) |
|
5.5.1 Feature Selection Using ƒ-Information |
|
|
129 | (1) |
|
5.5.2 Computational Complexity |
|
|
130 | (1) |
|
5.5.3 Fuzzy Equivalence Classes |
|
|
131 | (2) |
|
5.6 Quantitative Measures |
|
|
133 | (2) |
|
5.6.1 Fuzzy-Rough-Set-Based Quantitative Indices |
|
|
133 | (1) |
|
5.6.2 Existing Feature Evaluation Indices |
|
|
133 | (2) |
|
|
135 | (21) |
|
5.7.1 Description of Data Sets |
|
|
136 | (1) |
|
5.7.2 Illustrative Example |
|
|
137 | (1) |
|
5.7.3 Effectiveness of the FEPM-Based Method |
|
|
138 | (3) |
|
5.7.4 Optimum Value of Weight Parameter β |
|
|
141 | (1) |
|
5.7.5 Optimum Value of Multiplicative Parameter η |
|
|
141 | (4) |
|
5.7.6 Performance of Different ƒ-Information Measures |
|
|
145 | (7) |
|
5.7.7 Comparative Performance of Different Algorithms |
|
|
152 | (4) |
|
5.8 Conclusion and Discussion |
|
|
156 | (5) |
|
|
156 | (5) |
|
6 Rough Fuzzy c-Medoids and Amino Acid Sequence Analysis |
|
|
161 | (40) |
|
|
161 | (3) |
|
6.2 Bio-Basis Function and String Selection Methods |
|
|
164 | (4) |
|
|
164 | (2) |
|
6.2.2 Selection of Bio-Basis Strings Using Mutual Information |
|
|
166 | (1) |
|
6.2.3 Selection of Bio-Basis Strings Using Fisher Ratio |
|
|
167 | (1) |
|
6.3 Fuzzy-Possibilistic c-Medoids Algorithm |
|
|
168 | (4) |
|
|
168 | (1) |
|
|
169 | (1) |
|
6.3.3 Possibilistic c-Medoids |
|
|
170 | (1) |
|
6.3.4 Fuzzy-Possibilistic c-Medoids |
|
|
171 | (1) |
|
6.4 Rough-Fuzzy c-Medoids Algorithm |
|
|
172 | (4) |
|
|
172 | (2) |
|
6.4.2 Rough-Fuzzy c-Medoids |
|
|
174 | (2) |
|
6.5 Relational Clustering for Bio-Basis String Selection |
|
|
176 | (2) |
|
6.6 Quantitative Measures |
|
|
178 | (3) |
|
6.6.1 Using Homology Alignment Score |
|
|
178 | (1) |
|
6.6.2 Using Mutual Information |
|
|
179 | (2) |
|
|
181 | (15) |
|
6.7.1 Description of Data Sets |
|
|
181 | (2) |
|
6.7.2 Illustrative Example |
|
|
183 | (1) |
|
6.7.3 Performance Analysis |
|
|
184 | (12) |
|
6.8 Conclusion and Discussion |
|
|
196 | (5) |
|
|
196 | (5) |
|
7 Clustering Functionally Similar Genes from Microarray Data |
|
|
201 | (24) |
|
|
201 | (2) |
|
7.2 Clustering Gene Expression Data |
|
|
203 | (4) |
|
|
203 | (1) |
|
7.2.2 Self-Organizing Map |
|
|
203 | (1) |
|
7.2.3 Hierarchical Clustering |
|
|
204 | (1) |
|
7.2.4 Graph-Theoretical Approach |
|
|
204 | (1) |
|
7.2.5 Model-Based Clustering |
|
|
205 | (1) |
|
7.2.6 Density-Based Hierarchical Approach |
|
|
206 | (1) |
|
|
206 | (1) |
|
7.2.8 Rough-Fuzzy Clustering |
|
|
206 | (1) |
|
7.3 Quantitative and Qualitative Analysis |
|
|
207 | (2) |
|
|
207 | (1) |
|
7.3.2 Eisen and Cluster Profile Plots |
|
|
207 | (1) |
|
|
208 | (1) |
|
7.3.4 Gene-Ontology-Based Analysis |
|
|
208 | (1) |
|
7.4 Description of Data Sets |
|
|
209 | (3) |
|
|
209 | (2) |
|
|
211 | (1) |
|
|
211 | (1) |
|
|
211 | (1) |
|
7.4.5 Reduced Cell Cycle Data |
|
|
211 | (1) |
|
|
212 | (5) |
|
7.5.1 Performance Analysis of Rough-Fuzzy c-Means |
|
|
212 | (1) |
|
7.5.2 Comparative Analysis of Different c-Means |
|
|
212 | (3) |
|
7.5.3 Biological Significance Analysis |
|
|
215 | (1) |
|
7.5.4 Comparative Analysis of Different Algorithms |
|
|
215 | (2) |
|
7.5.5 Performance Analysis of Rough-Fuzzy-Possibilistic c-Means |
|
|
217 | (1) |
|
7.6 Conclusion and Discussion |
|
|
217 | (8) |
|
|
220 | (5) |
|
8 Selection of Discriminative Genes from Microarray Data |
|
|
225 | (32) |
|
|
225 | (2) |
|
8.2 Evaluation Criteria for Gene Selection |
|
|
227 | (3) |
|
|
228 | (1) |
|
|
228 | (1) |
|
8.2.3 Pearson's Correlation |
|
|
229 | (1) |
|
|
229 | (1) |
|
8.2.5 ƒ-Information Measures |
|
|
230 | (1) |
|
8.3 Approximation of Density Function |
|
|
230 | (4) |
|
|
231 | (1) |
|
8.3.2 Parzen Window Density Estimator |
|
|
231 | (2) |
|
8.3.3 Fuzzy Equivalence Partition Matrix |
|
|
233 | (1) |
|
8.4 Gene Selection using Information Measures |
|
|
234 | (1) |
|
|
235 | (15) |
|
8.5.1 Support Vector Machine |
|
|
235 | (1) |
|
8.5.2 Gene Expression Data Sets |
|
|
236 | (1) |
|
8.5.3 Performance Analysis of the FEPM |
|
|
236 | (14) |
|
8.5.4 Comparative Performance Analysis |
|
|
250 | (1) |
|
8.6 Conclusion and Discussion |
|
|
250 | (7) |
|
|
252 | (5) |
|
9 Segmentation of Brain Magnetic Resonance Images |
|
|
257 | (30) |
|
|
257 | (2) |
|
9.2 Pixel Classification of Brain MR Images |
|
|
259 | (5) |
|
9.2.1 Performance on Real Brain MR Images |
|
|
260 | (3) |
|
9.2.2 Performance on Simulated Brain MR Images |
|
|
263 | (1) |
|
9.3 Segmentation of Brain MR Images |
|
|
264 | (13) |
|
|
265 | (9) |
|
9.3.2 Selection of Initial Prototypes |
|
|
274 | (3) |
|
|
277 | (6) |
|
9.4.1 Illustrative Example |
|
|
277 | (1) |
|
9.4.2 Importance of Homogeneity and Edge Value |
|
|
278 | (1) |
|
9.4.3 Importance of Discriminant Analysis-Based Initialization |
|
|
279 | (1) |
|
9.4.4 Comparative Performance Analysis |
|
|
280 | (3) |
|
9.5 Conclusion and Discussion |
|
|
283 | (4) |
|
|
283 | (4) |
Index |
|
287 | |