Muutke küpsiste eelistusi

Rough-Neural Computing: Techniques for Computing with Words 2004 ed. [Kõva köide]

Edited by , Edited by
  • Formaat: Hardback, 736 pages, kõrgus x laius: 235x155 mm, kaal: 1269 g, XXV, 736 p., 1 Hardback
  • Sari: Cognitive Technologies
  • Ilmumisaeg: 22-Sep-2003
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540430598
  • ISBN-13: 9783540430599
Teised raamatud teemal:
  • Kõva köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 736 pages, kõrgus x laius: 235x155 mm, kaal: 1269 g, XXV, 736 p., 1 Hardback
  • Sari: Cognitive Technologies
  • Ilmumisaeg: 22-Sep-2003
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540430598
  • ISBN-13: 9783540430599
Teised raamatud teemal:
Soft computing comprises various paradigms dedicated to approximately solving real-world problems, e.g. in decision making, classification or learning; among these paradigms are fuzzy sets, rough sets, neural networks, genetic algorithms, and others.



It is well understood now in the soft computing community that hybrid approaches combining various paradigms are very promising approaches for solving complex problems. Exploiting the potential and strength of both neural networks and rough sets, this book is devoted to rough-neuro computing which is also related to the novel aspect of computing based on information granulation, in particular to computing with words. It provides foundational and methodological issues as well as applications in various fields.



 

Arvustused

From the reviews:









"This book (actually edited volume) presents recent advances in the area of rough neural computer from a wide konge (sic) of perspectives. The book contains a few introductory articles suitable to understand what the field of rough several computing is about." (Jan Friso Groote, Zentralblatt MATH, Vol. 1040(9), 2004)

Muu info

Springer Book Archives
Part I. Rough Sets, Granular Computing, and Rough-Neural Computing: Foundations
Elementary Rough Set Granules: Toward a Rough Set Processor
5(10)
Zdzistaw Pawlak
Rough-Neural Computing: An Introduction
15(28)
Sankar K. Pal
James F. Peters
Lech Polkowski
Andrzej Skowron
Information Granules and Rough-Neural Computing
43(42)
Andrzej Skowron
Jaroslaw Stepaniuk
A Rough-Neural Computation Model Based on Rough Mereology
85(24)
Lech Polkowski
Knowledge-Based Networking in Granular Worlds
109(30)
Witold Pedrycz
Adaptive Aspects of Combining Approximation Spaces
139(18)
Jakub Wroblewski
Algebras from Rough Sets
157(32)
Mohua Banerjee
Mihir K. Chakraborty
Part II. Hybrid Approaches
Approximation Transducers and Trees: A Technique for Combining Rough and Crisp Knowledge
189(30)
Patrick Doherty
Witold Lukaszewicz
Andrzej Skowron
Andrzej Szalas
Using Contextually Closed Queries for Local Closed-World Reasoning in Rough Knowledge Databases
219(32)
Patrick Doherty
Jaroslaw Kachniarz
Andrzej Szalas
On Model Evaluation, Indexes of Importance, and Interaction Values in Rough Set Analysis
251(26)
Gunther Gediga
Ivo Duntsch
New Fuzzy Rough Sets Based on Certainty Qualification
277(20)
Masahiro Inuiguchi
Tetsuzo Tanino
Toward Rough Datalog: Embedding Rough Sets in Prolog
297(36)
Jan Maluszynski
Aida Vitoria
On Exploring Soft Discretization of Continuous Attributes
333(18)
Hung Son Nguyen
Rough-SOM with Fuzzy Discretization
351(22)
Sankar K. Pal
Biswarup Dasgupta
Pabitra Mitra
Part III. Exemplary Application Areas
Biomedical Inference: A Semantic Model
373(38)
Jan Doroszewski
Fundamental Mathematical Notions of the Theory of Socially Embedded Games: A Granular Computing Perspective
411(24)
Anna Gomolinska
Fuzzy Games and Equilibria: The Perspective of the General Theory of Games on Nash and Normative Equilibria
435(36)
Tom R. Burns
Ewa Roszkowska
Rough Neurons: Petri Net Models and Applications
471(20)
James F. Peters
Sheela Ramanna
Zbigniew Suraj
Maciej Borkowski
Information Granulation in a Decision-Theoretical Model of Rough Sets
491(30)
Yiyu Yao
Part IV. Case Studies
Intelligent Acquisition of Audio Signals Employing Neural Networks and Rough Set Algorithms
521(22)
Andrzej Czyzewski
An Approach to Imbalanced Data Sets Based on Changing Rule Strength
543(12)
Jerzy W. Grzymala-Busse
Linda K. Goodwin
Witold J. Grzymala-Busse
Xinqun Zheng
Rough-Neural Approach to Testing the Influence of Visual Cues on Surround Sound Perception
555(18)
Bozena Kostek
Handwritten Digit Recognition Using Adaptive Classifier Construction Techniques
573(14)
Tuan Trung Nguyen
From Rough through Fuzzy to Crisp Concepts: Case Study on Image Color Temperature Description
587(12)
Wladyslaw Skarbek
Information Granulation and Pattern Recognition
599(38)
Andrzej Skowron
Roman W. Swiniarski
Computational Analysis of Acquired Dyslexia of Kanji Characters Based on Conventional and Rough Neural Networks
637(12)
Shusaku Tsumoto
WaRS: A Method for Signal Classification
649(40)
Piotr Wojdyllo
A Hybrid Model for Rule Discovery in Data
689(34)
Ning Zhong
Chunnian Liu
Ju-Zhen Dong
Setsuo Ohsuga
Author Index 723(2)
Index 725