Muutke küpsiste eelistusi

Satellite Communications Systems: Systems, Techniques and Technology 6th edition [Kõva köide]

(Ecole National Superieure De L'Aeronautique, France. Translated by S. David, Insight Consultancy), (University of Surrey, UK), (Ecole Nationale Superieure Des Telecommunications, France)
  • Formaat: Hardback, 800 pages, kõrgus x laius x paksus: 239x191x48 mm, kaal: 1633 g
  • Ilmumisaeg: 06-Feb-2020
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119382084
  • ISBN-13: 9781119382089
Teised raamatud teemal:
  • Formaat: Hardback, 800 pages, kõrgus x laius x paksus: 239x191x48 mm, kaal: 1633 g
  • Ilmumisaeg: 06-Feb-2020
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119382084
  • ISBN-13: 9781119382089
Teised raamatud teemal:
The updated 6th edition of the authoritative and comprehensive textbook to the field of satellite communications engineering

The revised and updated sixth edition of Satellite Communications Systems contains information on the most recent advances related to satellite communications systems, technologies, network architectures and new requirements of services and applications. The authors noted experts on the topic cover the state-of-the-art satellite communication systems and technologies and examine the relevant topics concerning communication and network technologies, concepts, techniques and algorithms. New to this edition is information on internetworking with the broadband satellite systems, more intensive coverage of Ka band technologies, GEO high throughput satellite (HTS), LEO constellations and the potential to support the current new broadband Internet services as well as future developments for global information infrastructure.

The authors offer details on digital communication systems and broadband networks in order to provide high-level researchers and professional engineers an authoritative reference. In addition, the book is designed in a user-friendly format. This important text:





Puts the focus on satellite communications and networks as well as the related applications and services Provides an essential, comprehensive and authoritative updated guide to the topic Contains new topics including the space segment, ground, ground satellite control and network management, relevant terrestrial networks and more Includes helpful illustrations, tables and problems to enhance learning Offers a summary at the beginning of each chapter to help understand the concepts and principles discussed

Written for research students studying or researching in the areas related to satellite communications systems and networks, the updated sixth edition of Satellite Communications Systems offers an essential guide to the most recent developments in the field of satellite communications engineering and references to international standards.
Acknowledgement xv
Acronyms xvii
Notations xxiii
1 Introduction 1(28)
1.1 Birth of Satellite Communications
1(1)
1.2 Development of Satellite Communications
1(2)
1.3 Configuration of a Satellite Communications System
3(8)
1.3.1 Communications links
5(1)
1.3.2 The space segment
6(4)
1.3.3 The ground segment
10(1)
1.4 Types of Orbit
11(5)
1.5 Radio Regulations
16(5)
1.5.1 The ITU organisation
16(1)
1.5.2 Space radiocommunication services
17(1)
1.5.3 Frequency allocation
18(3)
1.6 Technology Trends
21(2)
1.7 Services
23(2)
1.8 The Way Forward
25(2)
References
27(2)
2 Orbits And Related Issues 29(84)
2.1 Keplerian Orbits
29(24)
2.1.1 Kepler's laws
29(1)
2.1.2 Newton's law
29(1)
2.1.3 Relative movement of two point bodies
30(3)
2.1.4 Orbital parameters
33(5)
2.1.5 The earth's orbit
38(8)
2.1.6 Earth-satellite geometry
46(6)
2.1.7 Eclipses of the sun
52(1)
2.1.8 Sun-satellite conjunction
53(1)
2.2 Useful Orbits for Satellite Communication
53(27)
2.2.1 Elliptical orbits with non-zero inclination
54(13)
2.2.2 Geosynchronous elliptic orbits with zero inclination
67(1)
2.2.3 Geosynchronous circular orbits with non-zero inclination
68(2)
2.2.4 Sun-synchronous circular orbits with zero inclination
70(1)
2.2.5 Geostationary satellite orbits
70(10)
2.3 Perturbations of Orbits
80(30)
2.3.1 The nature of perturbations
81(2)
2.3.2 The effect of perturbations; orbit perturbation
83(2)
2.3.3 Perturbations of the orbit of geostationary satellites
85(8)
2.3.4 Orbit corrections: station keeping of geostationary satellites
93(17)
2.4 Conclusion
110(1)
References
110(3)
3 Baseband Digital Signals, Packet Networks, And Quality Of Service (QOS) 113(22)
3.1 Baseband Signals
114(9)
3.1.1 Digital telephone signal
114(4)
3.1.2 Sound signals
118(1)
3.1.3 Television signals
118(4)
3.1.4 Data and multimedia signals
122(1)
3.2 Performance Objectives
123(1)
3.2.1 Telephone
123(1)
3.2.2 Sound
123(1)
3.2.3 Television
123(1)
3.2.4 Data
123(1)
3.3 Availability Objectives
124(2)
3.4 Delay
126(2)
3.4.1 Delay in the terrestrial network
126(1)
3.4.2 Propagation delay over satellite links
126(1)
3.4.3 Baseband-signal processing time
127(1)
3.4.4 Protocol-induced delay
127(1)
3.5 IP Packet Transfer QOS and Network Performance
128(5)
3.5.1 Definition of QoS in the ETSI and ITU-T standards
128(1)
3.5.2 IP packet transfer performance parameters
129(2)
3.5.3 IP service availability parameters
131(1)
3.5.4 IP network QoS class
131(2)
3.6 Conclusion
133(1)
References
133(2)
4 Digital Communications Techniques 135(54)
4.1 Baseband Formatting
137(1)
4.1.1 Encryption
137(1)
4.1.2 Scrambling
138(1)
4.2 Digital Modulation
138(15)
4.2.1 Two-state modulation- BPSK and DE-BPSK
140(1)
4.2.2 Four-state modulation - QPSK
141(1)
4.2.3 Variants of QPSK
142(3)
4.2.4 Higher-order PSK and APSK
145(1)
4.2.5 Spectrum of unfiltered modulated carriers
146(1)
4.2.6 Demodulation
146(6)
4.2.7 Modulation spectral efficiency
152(1)
4.3 Channel Coding
153(4)
4.3.1 Block encoding and convolutional encoding
153(1)
4.3.2 Channel decoding
154(2)
4.3.3 Concatenated encoding
156(1)
4.3.4 Interleaving
157(1)
4.4 Channel Coding and the Power-Bandwidth Trade-Off
157(5)
4.4.1 Coding with variable bandwidth
157(2)
4.4.2 Coding with constant bandwidth
159(2)
4.4.3 Conclusion
161(1)
4.5 Coded Modulation
162(7)
4.5.1 Trellis-coded modulation
163(3)
4.5.2 Block-coded modulation
166(1)
4.5.3 Decoding coded modulation
167(1)
4.5.4 Multilevel trellis-coded modulation
167(1)
4.5.5 TCM using a multidimensional signal set
168(1)
4.5.6 Performance of coded modulations
168(1)
4.6 End-To-End Error Control
169(1)
4.7 Digital Video Broadcasting via Satellite (DVB-S)
170(5)
4.7.1 Transmission system
171(3)
4.7.2 Error performance requirements
174(1)
4.8 Second Generation DVB-S (DVB-S2)
175(8)
4.8.1 New technology in DVB-S2
175(2)
4.8.2 Transmission system architecture
177(1)
4.8.3 Error performance
177(2)
4.8.4 FEC encoding
179(4)
4.9 New Features of DVB-S2X
183(1)
4.10 Conclusion
184(3)
4.10.1 Digital transmission of telephony
184(1)
4.10.2 Digital broadcasting of television
185(2)
References
187(2)
5 Uplink, Downlink, And Overall Link Performance; Intersatellite Links 189(86)
5.1 Configuration of a Link
190(1)
5.2 Antenna Parameters
190(6)
5.2.1 Gain
190(2)
5.2.2 Radiation pattern and angular beamwidth
192(2)
5.2.3 Polarisation
194(2)
5.3 Radiated Power
196(1)
5.3.1 Effective isotropic radiated power (EIRP)
196(1)
5.3.2 Power flux density
197(1)
5.4 Received Signal Power
197(6)
5.4.1 Power captured by the receiving antenna and free space loss
197(3)
5.4.2 Additional losses
200(2)
5.4.3 Conclusion
202(1)
5.5 Noise Power Spectral Density at the Receiver Input
203(10)
5.5.1 The origins of noise
203(1)
5.5.2 Noise characterisation
203(3)
5.5.3 Noise temperature of an antenna
206(5)
5.5.4 System noise temperature
211(2)
5.5.5 Conclusion
213(1)
5.6 Individual Link Performance
213(6)
5.6.1 Carrier power to noise power spectral density ratio at receiver input
213(1)
5.6.2 Clear sky uplink performance
214(2)
5.6.3 Clear sky downlink performance
216(3)
5.7 Influence of the Atmosphere
219(19)
5.7.1 Impairments caused by rain
220(14)
5.7.2 Other impairments
234(2)
5.7.3 Link impairments - relative importance
236(1)
5.7.4 Link performance under rain conditions
236(1)
5.7.5 Conclusion
237(1)
5.8 Mitigation of Atmospheric Impairments
238(3)
5.8.1 Depolarisation mitigation
238(1)
5.8.2 Attenuation mitigation
238(1)
5.8.3 Site diversity
238(1)
5.8.4 Adaptivity
239(1)
5.8.5 Cost-availability trade-off
240(1)
5.9 Overall Link Performance with Transparent Satellite
241(11)
5.9.1 Characteristics of the satellite channel
242(3)
5.9.2 Expression for (C/N0)T
245(3)
5.9.3 Overall link performance for a transparent satellite without interference or intermodulation
248(4)
5.10 Overall Link Performance with Regenerative Satellite
252(5)
5.10.1 Linear satellite channel without interference
253(1)
5.10.2 Nonlinear satellite channel without interference
254(1)
5.10.3 Nonlinear satellite channel with interference
255(2)
5.11 Link Performance with Multibeam Antenna Coverage vs. Monobeam Coverage
257(8)
5.11.1 Advantages of multibeam coverage
258(5)
5.11.2 Disadvantages of multibeam coverage
263(2)
5.11.3 Conclusion
265(1)
5.12 Intersatellite Link Performance
265(8)
5.12.1 Frequency bands
265(1)
5.12.2 Radio-frequency links
265(1)
5.12.3 Optical links
266(7)
5.12.4 Conclusion
273(1)
References
273(2)
6 Multiple Access 275(50)
6.1 Layered Data Transmission
275(1)
6.2 Traffic Parameters
276(4)
6.2.1 Traffic intensity
276(1)
6.2.2 Call blocking probability
276(2)
6.2.3 Burstiness
278(1)
6.2.4 Call delay probability
278(2)
6.3 Traffic Routing
280(1)
6.3.1 One carrier per station-to-station link
281(1)
6.3.2 One carrier per transmitting station
281(1)
6.3.3 Comparison
281(1)
6.4 Access Techniques
281(3)
6.4.1 Access to a particular satellite channel (or transponder)
281(2)
6.4.2 Multiple access to the satellite repeater
283(1)
6.4.3 Performance evaluation - efficiency
284(1)
6.5 Frequency Division Multiple Access (FDMA)
284(6)
6.5.1 TDM/PSK/FDMA
284(1)
6.5.2 SCPC/FDMA
284(1)
6.5.3 Adjacent channel interference
285(1)
6.5.4 Intermodulation
286(3)
6.5.5 FDMA efficiency
289(1)
6.5.6 Conclusion
289(1)
6.6 Time Division Multiple Access (TDMA)
290(13)
6.6.1 Burst generation
291(3)
6.6.2 Frame structure
294(1)
6.6.3 Burst reception
294(2)
6.6.4 Synchronisation
296(4)
6.6.5 TDMA efficiency
300(2)
6.6.6 Conclusion
302(1)
6.7 Code Division Multiple Access (CDMA)
303(11)
6.7.1 Direct sequence (DS-CDMA)
303(4)
6.7.2 Frequency hopping CDMA (FH-CDMA)
307(1)
6.7.3 Code generation
308(1)
6.7.4 Synchronisation
309(2)
6.7.5 CDMA efficiency
311(2)
6.7.6 Conclusion
313(1)
6.8 Fixed And On-Demand Assignment
314(3)
6.8.1 The principle
314(1)
6.8.2 Comparison between fixed and on-demand assignment
315(1)
6.8.3 Centralised or distributed management of on-demand assignment
315(1)
6.8.4 Conclusion
316(1)
6.9 Random Access
317(5)
6.9.1 Asynchronous protocols
317(4)
6.9.2 Protocols with synchronisation
321(1)
6.9.3 Protocols with assignment on demand
321(1)
6.10 Conclusion
322(1)
References
323(2)
7 Satellite Networks 325(76)
7.1 Network Reference Models and Protocols
325(4)
7.1.1 Layering principle
325(1)
7.1.2 Open Systems Interconnection (OSI) reference model
326(1)
7.1.3 IP reference model
327(2)
7.2 Reference Architecture for Satellite Networks
329(1)
7.3 Basic Characteristics of Satellite Networks
330(4)
7.3.1 Satellite network topology
330(2)
7.3.2 Types of link
332(1)
7.3.3 Connectivity
333(1)
7.4 Satellite On-Board Connectivity
334(13)
7.4.1 On-board connectivity with transponder hopping
335(1)
7.4.2 On-board connectivity with transparent processing
336(6)
7.4.3 On-board connectivity with regenerative processing
342(4)
7.4.4 On-board connectivity with beam scanning (BFN - beam-forming network)
346(1)
7.5 Connectivity Through Intersatellite Links (ISLs)
347(6)
7.5.1 Links between geostationary and low earth orbit satellites (GEO-LEO)
347(1)
7.5.2 Links between geostationary satellites (GEO-GEO)
348(5)
7.5.3 Links between low earth orbit satellites (LEO-LEO)
353(1)
7.5.4 Conclusion
353(1)
7.6 Satellite Broadcast Networks
353(3)
7.6.1 Single uplink (one programme) per satellite channel
354(1)
7.6.2 Several programmes per satellite channel
354(1)
7.6.3 Single uplink with time division multiplexing (TDM) of programmes
355(1)
7.6.4 Multiple uplinks with time division multiplexing (TDM) of programmes on downlink
355(1)
7.7 Broadband Satellite Networks
356(31)
7.7.1 Overview of DVB-RCS/RCS2 and DVB-S/S2/S2X networks
357(2)
7.7.2 Protocol stack architecture for broadband satellite networks
359(1)
7.7.3 Physical layer and MAC layer
360(7)
7.7.4 Satellite MAC layer
367(6)
7.7.5 Satellite Link Control layer
373(3)
7.7.6 Quality of service
376(3)
7.7.7 Network layer
379(3)
7.7.8 Regenerative satellite mesh network architecture
382(5)
7.8 Transmission Control Protocol
387(6)
7.8.1 TCP segment header format
388(1)
7.8.2 Connection setup and data transmission
389(1)
7.8.3 Congestion control and flow control
389(1)
7.8.4 Impact of satellite channel characteristics on TCP
390(2)
7.8.5 TCP performance enhancement (PEP) protocols
392(1)
7.9 IPV6 Over Satellite Networks
393(3)
7.9.1 IPv6 basics
394(1)
7.9.2 IPv6 transitions
395(1)
7.9.3 IPv6 tunnelling through satellite networks
395(1)
7.9.4 6to4 translation via satellite networks
396(1)
7.10 Conclusion
396(1)
References
397(4)
8 Earth Stations 401(78)
8.1 Station Organisation
401(1)
8.2 Radio-Frequency Characteristics
402(13)
8.2.1 Effective isotropic radiated power (EIRP)
402(2)
8.2.2 Figure of merit of the station
404(1)
8.2.3 Standards defined by international organisations and satellite operators
405(10)
8.3 The Antenna Subsystem
415(35)
8.3.1 Radiation characteristics (main lobe)
415(4)
8.3.2 Side-lobe radiation
419(1)
8.3.3 Antenna noise temperature
420(5)
8.3.4 Types of antenna
425(4)
8.3.5 Pointing angles of an earth station antenna
429(3)
8.3.6 Mountings to permit antenna pointing
432(7)
8.3.7 Tracking
439(11)
8.4 The Radio-Frequency Subsystem
450(9)
8.4.1 Receiving equipment
450(2)
8.4.2 Transmission equipment
452(7)
8.4.3 Redundancy
459(1)
8.5 Communication Subsystems
459(7)
8.5.1 Frequency translation
460(2)
8.5.2 Amplification, filtering, and equalisation
462(2)
8.5.3 Modems
464(2)
8.6 The Network Interface Subsystem
466(8)
8.6.1 Multiplexing and demultiplexing
468(1)
8.6.2 Digital speech interpolation (DSI)
468(1)
8.6.3 Digital circuit multiplication equipment (DCME)
469(3)
8.6.4 Equipment specific to SCPC transmission
472(1)
8.6.5 Ethernet port for IP network connections
472(2)
8.7 Monitoring and Control; Auxiliary Equipment
474(2)
8.7.1 Monitoring, alarms, and control (MAC) equipment
475(1)
8.7.2 Electrical power
475(1)
8.8 Conclusion
476(1)
References
476(3)
9 The Communication Payload 479(94)
9.1 Mission and Characteristics of the Payload
479(3)
9.1.1 Functions of the payload
479(1)
9.1.2 Characterisation of the payload
480(1)
9.1.3 The relationship between the radio-frequency characteristics
481(1)
9.2 Transparent Repeater
482(27)
9.2.1 Characterisation of nonlinearities
482(9)
9.2.2 Repeater organisation
491(6)
9.2.3 Equipment characteristics
497(12)
9.3 Regenerative Repeater
509(2)
9.3.1 Coherent demodulation
510(1)
9.3.2 Differential demodulation
510(1)
9.3.3 Multicarrier demodulation
511(1)
9.4 Multibeam Antenna Payload
511(9)
9.4.1 Fixed interconnection
512(1)
9.4.2 Reconfigurable (semi-fixed) interconnection
512(1)
9.4.3 Transparent on-board time domain switching
513(2)
9.4.4 On-board frequency domain transparent switching
515(1)
9.4.5 Baseband regenerative switching
516(2)
9.4.6 Optical switching
518(2)
9.5 Introduction to Flexible Payloads
520(2)
9.6 Solid State Equipment Technology
522(1)
9.6.1 The environment
522(1)
9.6.2 Analogue microwave component technology
522(1)
9.6.3 Digital component technology
523(1)
9.7 Antenna Coverage
523(20)
9.7.1 Service zone contour
524(3)
9.7.2 Geometrical contour
527(1)
9.7.3 Global coverage
527(2)
9.7.4 Reduced or spot coverage
529(2)
9.7.5 Evaluation of antenna pointing error
531(11)
9.7.6 Conclusion
542(1)
9.8 Antenna Characteristics
543(26)
9.8.1 Antenna functions
543(1)
9.8.2 The RF coverage
544(1)
9.8.3 Circular beams
545(3)
9.8.4 Elliptical beams
548(1)
9.8.5 The influence of depointing
549(3)
9.8.6 Shaped beams
552(1)
9.8.7 Multiple beams
553(3)
9.8.8 Types of antenna
556(3)
9.8.9 Antenna technologies
559(10)
9.9 Conclusion
569(1)
References
569(4)
10 The Platform 573(86)
10.1 Subsystems
575(1)
10.2 Attitude Control
576(19)
10.2.1 Attitude control functions
576(1)
10.2.2 Attitude sensors
577(2)
10.2.3 Attitude determination
579(3)
10.2.4 Actuators
582(2)
10.2.5 The principle of gyroscopic stabilisation
584(2)
10.2.6 Spin stabilisation
586(2)
10.2.7 Three-axis stabilisation
588(7)
10.3 The Propulsion Subsystem
595(15)
10.3.1 Characteristics of thrusters
595(2)
10.3.2 Chemical propulsion
597(4)
10.3.3 Electric propulsion
601(5)
10.3.4 Organisation of the propulsion subsystem
606(3)
10.3.5 Electric propulsion for station-keeping and orbit transfer
609(1)
10.4 The Electric Power Supply
610(19)
10.4.1 Primary energy sources
611(6)
10.4.2 Secondary energy sources
617(6)
10.4.3 Conditioning and protection circuits
623(5)
10.4.4 Example calculations
628(1)
10.5 Telemetry, Tracking, and Command (TTC) and On-Board Data Handling (OBDH)
629(19)
10.5.1 Frequencies used
630(1)
10.5.2 The telecommand links
631(1)
10.5.3 Telemetry links
632(1)
10.5.4 Telecommand (TC) and telemetry (TM) message format standards
633(6)
10.5.5 On-board data handling (OBDH)
639(5)
10.5.6 Tracking
644(4)
10.6 Thermal Control and Structure
648(7)
10.6.1 Thermal control specifications
648(2)
10.6.2 Passive control
650(3)
10.6.3 Active control
653(1)
10.6.4 Structure
654(1)
10.6.5 Conclusion
655(1)
10.7 Developments and Trends
655(3)
References
658(1)
11 Satellite Installation And Launch Vehicles 659(62)
11.1 Installation in Orbit
659(26)
11.1.1 Basic principles
659(2)
11.1.2 Calculation of the required velocity increments
661(1)
11.1.3 Inclination coliection and circularisation
662(9)
11.1.4 The apogee (or perigee) motor
671(6)
11.1.5 Injection into orbit with a conventional launcher
677(2)
11.1.6 Injection into orbit from a quasi-circular low altitude orbit
679(2)
11.1.7 Operations during installation (station acquisition)
681(2)
11.1.8 Injection into orbits other than geostationary (non-GEO orbits)
683(2)
11.1.9 The launch window
685(1)
11.2 Launch Vehicles
685(34)
11.2.1 Brazil
686(1)
11.2.2 China
686(4)
11.2.3 Commonwealth of Independent States (CIS)
690(6)
11.2.4 Europe
696(8)
11.2.5 India
704(1)
11.2.6 Israel
705(1)
11.2.7 Japan
705(3)
11.2.8 South Korea
708(1)
11.2.9 United States of America
708(10)
11.2.10 Reusable launch vehicles
718(1)
11.2.11 Cost of installation in orbit
719(1)
References
719(2)
12 The Space Environment 721(16)
12.1 Vacuum
721(1)
12.1.1 Characterisation
721(1)
12.1.2 Effects
722(1)
12.2 The Mechanical Environment
722(4)
12.2.1 The gravitational field
722(2)
12.2.2 The earth's magnetic field
724(1)
12.2.3 Solar radiation pressure
725(1)
12.2.4 Meteorites and material particles
725(1)
12.2.5 Torques of internal origin
726(1)
12.2.6 The effect of communication transmissions
726(1)
12.2.7 Conclusions
726(1)
12.3 Radiation
726(4)
12.3.1 Solar radiation
727(1)
12.3.2 Earth radiation
728(1)
12.3.3 Thermal effects
728(2)
12.3.4 Effects on materials 73i)
12.4 Flux of High-Energy Particles
730(4)
12.4.1 Cosmic particles
730(1)
12.4.2 Effects on materials
731(3)
12.5 The Environment During Installation
734(1)
12.5.1 The environment during launching
734(1)
12.5.2 Environment in the transfer orbit
734(1)
References
735(2)
13 Reliability And Availability Of Satellite Communications Systems 737(18)
13.1 Introduction to Reliability
737(4)
13.1.1 Failure rate
737(1)
13.1.2 The probability of survival, or reliability
738(1)
13.1.3 Failure probability or unreliability
739(1)
13.1.4 Mean time to failure (MTTF)
739(1)
13.1.5 Mean satellite lifetime
740(1)
13.1.6 Reliability during the wear-out period
741(1)
13.2 Satellite System Availability
741(2)
13.2.1 No backup satellite in orbit
742(1)
13.2.2 Backup satellite in orbit
742(1)
13.2.3 Conclusion
742(1)
13.3 Subsystem Reliability
743(6)
13.3.1 Elements in series
743(1)
13.3.2 Elements in parallel (static redundancy)
744(1)
13.3.3 Dynamic redundancy (with switching)
745(4)
13.3.4 Equipment having several failure modes
749(1)
13.4 Component Reliability
749(5)
13.4.1 Component reliability
749(2)
13.4.2 Component selection
751(1)
13.4.3 Manufacture
752(1)
13.4.4 Quality assurance
752(2)
References
754(1)
Index 755
GÉRARD MARAL, PhD, developed the Telecom-Paris Site of Toulouse and its Satellite Communications Systems Educational and Research Programme.

MICHEL BOUSQUET, ISAE-SUPAERO (Retired) has lectured on satellite communications in numerous universities and continuing education courses world-wide. He was involved in several EU and ESA research programmes. Standing on the committees of AIAA and IEEE conferences, he is the recipient of the AIAA Communications Award for 2019.

ZHILI SUN, PhD, is Professor at the University of Surrey and Postgraduate Research Director. He has researched satellite communication networks for more than 26 years and worked in many major European framework research projects.