Muutke küpsiste eelistusi

Schaum's Outline of Electromagnetics, Fifth Edition 5th edition [Pehme köide]

  • Formaat: Paperback / softback, 400 pages, kõrgus x laius x paksus: 274x206x20 mm, kaal: 903 g
  • Ilmumisaeg: 11-Oct-2018
  • Kirjastus: McGraw-Hill Education
  • ISBN-10: 126012097X
  • ISBN-13: 9781260120974
Teised raamatud teemal:
  • Formaat: Paperback / softback, 400 pages, kõrgus x laius x paksus: 274x206x20 mm, kaal: 903 g
  • Ilmumisaeg: 11-Oct-2018
  • Kirjastus: McGraw-Hill Education
  • ISBN-10: 126012097X
  • ISBN-13: 9781260120974
Teised raamatud teemal:
Tough Test Questions? Missed Lectures? Not Enough Time?

Fortunately, there’s Schaum’s. 

More than 40 million students have trusted Schaum’s to help them succeed in the classroom and on exams. Schaum’s is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, sovled problems, and practice exercises to test your skills. 

This Schaum’s Outline gives you:

• Hundreds of supplementary problems to reinforce knowledge
• Concise exaplanations of all electromagentic concepts
• Information on current density, capacitance, magnetic fields, inductance, electromagnetic waves, transmission lines, and antennas
• New section on transmission line parameters
• New section illustrating the use of admittance plane and chart
• New section on impedance transformation
• New chapter on sky waves, attenuation and delay effects in troposphere, line of signt propagation and other relevant topics
• Support for all major textbooks for courses in Electromagnetics

PLUS: Access to revised Schaums.com website with access to 20 problem-solving videos, and more.

Schaum’s reinforces the main concepts required in your course and offers hundreds of practice questions to help you suceed. Use Schaum’s to shorten your study time-and get your best test scores!

Schaum’s Outlines – Problem solved. 

Chapter 1 The Subject of Electromagnetics 1(30)
1.1 Historical Background
1(1)
1.2 Objectives of the
Chapter
1(1)
1.3 Electric Charge
2(1)
1.4 Units
2(2)
1.5 Vectors
4(1)
1.6 Electrical Force, Field, Flux, and Potential
4(3)
1.7 Magnetic Force, Field, Flux, and Potential
7(2)
1.8 Electromagnetic Induction
9(1)
1.9 Mathematical Operators and Identities
10(1)
1.10 Maxwell's Equations
10(1)
1.11 Electromagnetic Waves
11(3)
1.12 Trajectory of a Sinusoidal Motion in Two Dimensions
14(1)
1.13 Wave Polarization
15(1)
1.14 Electromagnetic Spectrum
16(1)
1.15 Transmission Lines
17(14)
Chapter 2 Vector Analysis 31(13)
2.1 Introduction
31(1)
2.2 Vector Notation
31(1)
2.3 Vector Functions
32(1)
2.4 Vector Algebra
32(2)
2.5 Coordinate Systems
34(1)
2.6 Differential Volume, Surface, and Line Elements
35(9)
Chapter 3 Electric Field 44(19)
3.1 Introduction
44(1)
3.2 Coulomb's Law in Vector Form
44(1)
3.3 Superposition
45(1)
3.4 Electric Field Intensity
45(1)
3.5 Charge Distributions
46(2)
3.6 Standard Charge Configurations
48(15)
Chapter 4 Electric Flux 63(15)
4.1 Net Charge in a Region
63(1)
4.2 Electric Flux and Flux Density
63(2)
4.3 Gauss's Law
65(1)
4.4 Relation between Flux Density and Electric Field Intensity
65(1)
4.5 Special Gaussian Surfaces
66(12)
Chapter 5 Gradient, Divergence, Curl, and Laplacian 78(19)
5.1 Introduction
78(1)
5.2 Gradient
78(1)
5.3 The Del Operator
79(1)
5.4 The Del Operator and Gradient
80(1)
5.5 Divergence
80(1)
5.6 Expressions for Divergence in Coordinate Systems
80(2)
5.7 The Del Operator and Divergence
82(1)
5.8 Divergence of D
83(1)
5.9 The Divergence Theorem
83(1)
5.10 Curl
84(2)
5.11 Laplacian
86(1)
5.12 Summary of Vector Operations
86(11)
Chapter 6 Electrostatics: Work, Energy, and Potential 97(16)
6.1 Work Done in Moving a Point Charge
97(1)
6.2 Conservative Property of the Electrostatic Field
98(1)
6.3 Electric Potential between Two Points
99(1)
6.4 Potential of a Point Charge
99(1)
6.5 Potential of a Charge Distribution
99(1)
6.6 Relationship between E and V
100(1)
6.7 Energy in Static Electric Fields
101(12)
Chapter 7 Electric Current 113(18)
7.1 Introduction
113(1)
7.2 Charges in Motion
113(1)
7.3 Convection Current Density J
114(1)
7.4 Conduction Current Density J
114(1)
7.5 Conductivity σ
115(1)
7.6 Current I
116(1)
7.7 Resistance R
117(1)
7.8 Current Sheet Density K
118(1)
7.9 Continuity of Current
119(1)
7.10 Conductor-Dielectric Boundary Conditions
120(11)
Chapter 8 Capacitance and Dielectric Materials 131(20)
8.1 Polarization P and Relative Permittivity r
131(1)
8.2 Capacitance
132(1)
8.3 Multiple-Dielectric Capacitors
133(1)
8.4 Energy Stored in a Capacitor
134(1)
8.5 Fixed-Voltage D and E
135(1)
8.6 Fixed-Charge D and E
135(1)
8.7 Boundary Conditions at the Interface of Two Dielectrics
136(1)
8.8 Method of Images
137(14)
Chapter 9 Laplace's Equation 151(21)
9.1 Introduction
151(1)
9.2 Poisson's Equation and Laplace's Equation
151(1)
9.3 Explicit Forms of Laplace's Equation
151(1)
9.4 Uniqueness Theorem
152(1)
9.5 Mean Value and Maximum Value Theorems
153(1)
9.6 Cartesian Solution in One Variable
153(1)
9.7 Cartesian Product Solution
154(1)
9.8 Cylindrical Product Solution
155(1)
9.9 Spherical Product Solution
156(16)
Chapter 10 Magnetic Field and Boundary Conditions 172(21)
10.1 Introduction
172(1)
10.2 Biot-Savart Law
172(2)
10.3 Ampere's Law
174(1)
10.4 Relationship of J and H
174(1)
10.5 Magnetic Flux Density B
175(1)
10.6 Boundary Relations for Magnetic Fields
176(1)
10.7 Current Sheet at the Boundary
177(1)
10.8 Summary of Boundary Conditions
178(1)
10.9 Vector Magnetic Potential A
178(1)
10.10 Stokes' Theorem
179(14)
Chapter 11 Forces and Torques in Magnetic Fields 193(16)
11.1 Magnetic Force on Particles
193(1)
11.2 Electric and Magnetic Fields Combined
194(1)
11.3 Magnetic Force on a Current Element
195(1)
11.4 Work and Power
195(1)
11.5 Torque
196(1)
11.6 Magnetic Moment of a Planar Coil
197(12)
Chapter 12 Inductance and Magnetic Circuits 209(24)
12.1 Inductance
209(2)
12.2 Standard Conductor Configurations
211(1)
12.3 Faraday's Law and Self-Inductance
212(1)
12.4 Internal Inductance
212(1)
12.5 Mutual Inductance
213(1)
12.6 Magnetic Circuits
214(1)
12.7 The B-H Curve
215(1)
12.8 Ampere's Law for Magnetic Circuits
216(1)
12.9 Cores with Air Gaps
217(1)
12.10 Multiple Coils
217(1)
12.11 Parallel Magnetic Circuits
218(15)
Chapter 13 Time-Varying Fields and Maxwell's Equations 233(18)
13.1 Introduction
233(1)
13.2 Maxwell's Equations for Static Fields
233(1)
13.3 Faraday's Law and Lenz's Law
233(1)
13.4 Conductors' Motion in Time-Independent Fields
234(1)
13.5 Conductors' Motion in Time-Dependent Fields
235(1)
13.6 Displacement Current
236(2)
13.7 Ratio of to JD
238(1)
13.8 Maxwell's Equations for Time-Varying Fields
238(13)
Chapter 14 Electromagnetic Waves 251(22)
14.1 Introduction
251(1)
14.2 Wave Equations
251(1)
14.3 Solutions in Cartesian Coordinates
252(1)
14.4 Plane Waves
253(1)
14.5 Solutions for Partially Conducting Media
254(1)
14.6 Solutions for Perfect Dielectrics
255(1)
14.7 Solutions for Good Conductors; Skin Depth
255(1)
14.8 Interface Conditions at Normal Incidence
256(2)
14.9 Oblique Incidence and Snell's Laws
258(1)
14.10 Perpendicular Polarization
259(1)
14.11 Parallel Polarization
259(1)
14.12 Standing Waves
260(1)
14.13 Power and the Poynting Vector
261(12)
Chapter 15 Transmission Lines 273(43)
15.1 Introduction
273(1)
15.2 Distributed Parameters
273(1)
15.3 Incremental Models
274(1)
15.4 Transmission Line Equation
275(1)
15.5 Impedance, Admittance, and Other Features of Interest
275(1)
15.6 Sinusoidal Steady-State Excitation
276(2)
15.7 Lossless Lines
278(1)
15.8 The Smith Chart
279(3)
15.9 Admittance Plane
282(1)
15.10 Quarter-Wave Transformer
282(1)
15.11 Impedance Matching
283(1)
15.12 Single-Stub Matching
284(1)
15.13 Double-Stub Matching
285(2)
15.14 Impedance Measurement
287(1)
15.15 Transients in Lossless Lines
288(28)
Chapter 16 Waveguides 316(19)
16.1 Introduction
316(1)
16.2 Transverse and Axial Fields
316(2)
16.3 TE and TM Modes; Wave Impedances
318(1)
16.4 Determination of the Axial Fields
318(1)
16.5 Mode Cutoff Frequencies
319(1)
16.6 Dominant Mode
320(2)
16.7 Power Transmitted in a Lossless Waveguide
322(1)
16.8 Power Dissipation in a Lossy Waveguide
322(13)
Chapter 17 Antennas 335(19)
17.1 Introduction
335(1)
17.2 Current Source and the E and H Fields
335(1)
17.3 Electric (Hertzian) Dipole Antenna
335(1)
17.4 Antenna Parameters
336(2)
17.5 Small Circular-Loop Antenna
338(1)
17.6 Finite-Length Dipole
338(1)
17.7 Monopole Antenna
339(1)
17.8 Self- and Mutual Impedances
340(1)
17.9 The Receiving Antenna
341(1)
17.10 Linear Arrays
342(1)
17.11 Reflectors
343(11)
Chapter 18 Propagation of Electromagnetic Waves in the Atmosphere 354(30)
18.1 Introduction and Summary
354(1)
18.2 Plane Waves in Homogeneous Media
354(1)
18.3 Propagation Parameters
355(2)
18.4 Complex Dielectric Constant
357(1)
18.5 Power Equation
358(1)
18.6 Refraction
359(1)
18.7 Reflection, Diffraction, and Scattering
360(1)
18.8 The Atmosphere
361(1)
18.9 Atmospheric Effects on Propagation of Radio Waves
362(1)
18.10 Attenuation by Gaseous Absorption
362(1)
18.11 Attenuation by Hydrometeors
363(1)
18.12 Ground and Sky Waves
364(2)
18.13 Models of the Troposphere
366(1)
18.14 Tropospheric Refractivity
366(1)
18.15 Tropospheric Excess Delay
367(1)
18.16 Bending Effect of Tropospheric Refraction
368(1)
18.17 Conductivity, Permittivity, and Refraction Index of the Ionosphere
369(1)
18.18 Satellite Microwave Ranging
370(1)
18.19 Ionospheric Range Error
371(1)
18.20 Tropospheric Range Error
372(12)
Appendix 384(1)
Index 385
McGraw-Hill authors represent the leading experts in their fields and are dedicated to improving the lives, careers, and interests of readers worldwide





McGraw-Hill authors represent the leading experts in their fields and are dedicated to improving the lives, careers, and interests of readers worldwide