Muutke küpsiste eelistusi

Science of Fractal Images Softcover reprint of the original 1st ed. 1988 [Pehme köide]

Contributions by , Contributions by , Edited by , Contributions by , Contributions by , Contributions by , Contributions by , Edited by , Contributions by , Contributions by
  • Formaat: Paperback / softback, 312 pages, kõrgus x laius: 280x210 mm, kaal: 815 g, XIV, 312 p., 1 Paperback / softback
  • Ilmumisaeg: 08-Oct-2011
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1461283493
  • ISBN-13: 9781461283492
Teised raamatud teemal:
  • Pehme köide
  • Hind: 104,29 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 122,69 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 312 pages, kõrgus x laius: 280x210 mm, kaal: 815 g, XIV, 312 p., 1 Paperback / softback
  • Ilmumisaeg: 08-Oct-2011
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1461283493
  • ISBN-13: 9781461283492
Teised raamatud teemal:
This book is based on notes for the course Fractals:lntroduction, Basics and Perspectives given by MichaelF. Barnsley, RobertL. Devaney, Heinz-Otto Peit­ gen, Dietmar Saupe and Richard F. Voss. The course was chaired by Heinz-Otto Peitgen and was part of the SIGGRAPH '87 (Anaheim, California) course pro­ gram. Though the five chapters of this book have emerged from those courses we have tried to make this book a coherent and uniformly styled presentation as much as possible. It is the first book which discusses fractals solely from the point of view of computer graphics. Though fundamental concepts and algo­ rithms are not introduced and discussed in mathematical rigor we have made a serious attempt to justify and motivate wherever it appeared to be desirable. Ba­ sic algorithms are typically presented in pseudo-code or a description so close to code that a reader who is familiar with elementary computer graphics should find no problem to get started. Mandelbrot's fractal geometry provides both a description and a mathemat­ ical model for many of the seemingly complex forms and patterns in nature and the sciences. Fractals have blossomed enormously in the past few years and have helped reconnect pure mathematics research with both natural sciences and computing. Computer graphics has played an essential role both in its de­ velopment and rapidly growing popularity. Conversely, fractal geometry now plays an important role in the rendering, modelling and animation of natural phenomena and fantastic shapes in computer graphics.

Muu info

Springer Book Archives
1 Fractals in nature: From characterization to simulation.- 1.1 Visual
introduction to fractals: Coastlines, mountains and clouds.- 1.2 Fractals in
nature: A brief survey from aggregation to music.- 1.3 Mathematical models:
Fractional Brownian motion.- 1.4 Algorithms: Approximating fBm on a finite
grid.- 1.5 Laputa: A concluding tale.- 1.6 Mathematical details and
formalism.- 2 Algorithms for random fractals.- 2.1 Introduction.- 2.2 First
case study: One-dimensional Brownian motion.- 2.3 Fractional Brownian motion
: Approximation by spatial methods.- 2.4 Fractional Brownian motion :
Approximation by spectral synthesis.- 2.5 Extensions to higher dimensions.-
2.6 Generalized stochastic subdivision and spectral synthesis of ocean
waves.- 2.7 Computer graphics for smooth and fractal surfaces.- Color plates
and captions.- 2.8 Random variables and random functions.- 3 Fractal patterns
arising in chaotic dynamical systems.- 3.1 Introduction.- 3.2 Chaotic
dynamical systems.- 3.3 Complex dynamical systems.- 4 Fantastic deterministic
fractals.- 4.1 Introduction.- 4.2 The quadratic family.- 4.3 Generalizations
and extensions.- 5 Fractal modelling of real world images.- 5.1
Introduction.- 5.2 Background references and introductory comments.- 5.3
Intuitive introduction to IFS: Chaos and measures.- 5.4 The computation of
images from IFS codes.- 5.5 Determination of IFS codes: The Collage Theorem.-
5.6 Demonstrations.- A Fractal landscapes without creases and with rivers.-
A.1 Non-Gaussian and non-random variants of midpoint displacement.- A.1.1
Midpoint displacement constructions for the paraboloids.- A.1.2 Midpoint
displacement and systematic fractals: The Takagi fractal curve, its kin, and
the related surfaces.- A.1.3 Random midpoint displacements with a sharply
non-Gaussian displacements distribution.- A.2 Random landscapes without
creases.- A.2.1 A classification of subdivision schemes: One may displace the
midpoints of either frame wires or of tiles.- A.2.2 Context independence and
the creased texture.- A.2.3 A new algorithm using triangular tile midpoint
displacement.- A.2.4 A new algorithm using hexagonal tile midpoint
displacement.- A.3 Random landscape built on prescribed river networks.-
A.3.1 Building on a non-random map made of straight rivers and watersheds,
with square drainage basins.- A.3.2 Building on the non-random map shown on
the top of Plate 73 of The Fractal Geometry of Nature.- B An eye for
fractals.- Dietmar Saupe.- C A unified approach to fractal curves and
plants.- C.1 String rewriting systems.- C.2 The von Koch snowflake curve
revisited.- C.3 Formal definitions and implementation.- D Exploring the
Mandelbrot set.- B An eye for fractals.- Yuval Fisher.- D.1 Bounding the
distance to M.- D.2 Finding disks in the interior of M.- D.3 Connected Julia
sets.