|
|
1 | (28) |
|
1.1 Computation Inspired by Nature |
|
|
1 | (2) |
|
|
3 | (2) |
|
1.3 Evolution Versus Learning |
|
|
5 | (1) |
|
|
6 | (3) |
|
|
7 | (1) |
|
|
8 | (1) |
|
1.5 Heuristics, Metaheuristics, and Hyper-Heuristics |
|
|
9 | (2) |
|
|
11 | (9) |
|
1.6.1 Lagrange Multiplier Method |
|
|
12 | (1) |
|
1.6.2 Direction-Based Search and Simplex Search |
|
|
13 | (1) |
|
1.6.3 Discrete Optimization Problems |
|
|
14 | (2) |
|
1.6.4 P, NP, NP-Hard, and NP-Complete |
|
|
16 | (1) |
|
1.6.5 Multiobjective Optimization Problem |
|
|
17 | (2) |
|
1.6.6 Robust Optimization |
|
|
19 | (1) |
|
1.7 Performance Indicators |
|
|
20 | (2) |
|
1.8 No Free Lunch Theorem |
|
|
22 | (1) |
|
|
23 | (6) |
|
|
25 | (4) |
|
|
29 | (8) |
|
|
29 | (1) |
|
2.2 Basic Simulated Annealing |
|
|
30 | (3) |
|
2.3 Variants of Simulated Annealing |
|
|
33 | (4) |
|
|
35 | (2) |
|
|
37 | (34) |
|
3.1 Introduction to Evolutionary Computation |
|
|
37 | (2) |
|
3.1.1 Evolutionary Algorithms Versus Simulated Annealing |
|
|
39 | (1) |
|
3.2 Terminologies of Evolutionary Computation |
|
|
39 | (3) |
|
|
42 | (1) |
|
3.4 Selection/Reproduction |
|
|
43 | (3) |
|
|
46 | (2) |
|
|
48 | (1) |
|
3.7 Noncanonical Genetic Operators |
|
|
49 | (2) |
|
3.8 Exploitation Versus Exploration |
|
|
51 | (4) |
|
3.9 Two-Dimensional Genetic Algorithms |
|
|
55 | (1) |
|
3.10 Real-Coded Genetic Algorithms |
|
|
56 | (4) |
|
3.11 Genetic Algorithms for Sequence Optimization |
|
|
60 | (11) |
|
|
64 | (7) |
|
|
71 | (12) |
|
|
71 | (1) |
|
|
72 | (3) |
|
|
75 | (1) |
|
|
76 | (2) |
|
4.4.1 Limiting on Program Size |
|
|
77 | (1) |
|
4.4.2 Penalizing the Fitness of an Individual with Large Size |
|
|
77 | (1) |
|
4.4.3 Designing Genetic Operators |
|
|
77 | (1) |
|
4.5 Gene Expression Programming |
|
|
78 | (5) |
|
|
80 | (3) |
|
5 Evolutionary Strategies |
|
|
83 | (10) |
|
|
83 | (1) |
|
|
84 | (1) |
|
5.3 Evolutionary Gradient Search and Gradient Evolution |
|
|
85 | (3) |
|
5.4 CMA Evolutionary Strategies |
|
|
88 | (5) |
|
|
90 | (3) |
|
|
93 | (12) |
|
|
93 | (1) |
|
|
94 | (3) |
|
|
97 | (3) |
|
|
100 | (1) |
|
6.5 Theoretical Analysis on DE |
|
|
100 | (5) |
|
|
101 | (4) |
|
7 Estimation of Distribution Algorithms |
|
|
105 | (16) |
|
|
105 | (2) |
|
|
107 | (1) |
|
7.3 Population-Based Incremental Learning |
|
|
108 | (2) |
|
7.4 Compact Genetic Algorithms |
|
|
110 | (2) |
|
7.5 Bayesian Optimization Algorithm |
|
|
112 | (1) |
|
7.6 Concergence Properties |
|
|
112 | (1) |
|
|
113 | (8) |
|
7.7.1 Probabilistic Model Building GP |
|
|
115 | (1) |
|
|
116 | (5) |
|
8 Topics in Evolutinary Algorithms |
|
|
121 | (32) |
|
8.1 Convergence of Evolutinary Algorithms |
|
|
121 | (4) |
|
8.1.1 Schema Theorem and Building-Block Hypothesis |
|
|
121 | (2) |
|
8.1.2 Finite and Infinite Population Models |
|
|
123 | (2) |
|
8.2 Random Problems and Deceptive Functions |
|
|
125 | (2) |
|
8.3 Parallel Evolutionary Algorithms |
|
|
127 | (9) |
|
8.3.1 Master--Slave Model |
|
|
129 | (1) |
|
|
130 | (2) |
|
|
132 | (1) |
|
8.3.4 Cooperative Coevolution |
|
|
133 | (1) |
|
|
134 | (1) |
|
|
135 | (1) |
|
|
136 | (3) |
|
8.4.1 Coevolutionary Approaches |
|
|
137 | (1) |
|
8.4.2 Coevolutionary Approach for Minimax Optimization |
|
|
138 | (1) |
|
8.5 Interactive Evolutionary Computation |
|
|
139 | (1) |
|
8.6 Fitness Approximation |
|
|
139 | (2) |
|
8.7 Other Heredity-Based Algorithms |
|
|
141 | (1) |
|
8.8 Application: Optimizating Neural Networks |
|
|
142 | (11) |
|
|
146 | (7) |
|
9 Particle Swarm Optimization |
|
|
153 | (22) |
|
|
153 | (1) |
|
|
154 | (5) |
|
|
156 | (1) |
|
9.2.2 PSO Variants Using Gaussian or Cauchy Distribution |
|
|
157 | (1) |
|
9.2.3 Stability Analysis of PSO |
|
|
157 | (2) |
|
9.3 PSO Variants Using Different Neighborhood Topologies |
|
|
159 | (1) |
|
|
160 | (4) |
|
9.5 PSO and EAs: Hybridization |
|
|
164 | (1) |
|
|
165 | (1) |
|
|
166 | (9) |
|
|
169 | (6) |
|
10 Artificial Immune Systems |
|
|
175 | (16) |
|
|
175 | (2) |
|
10.2 Immunological Theories |
|
|
177 | (3) |
|
|
180 | (11) |
|
10.3.1 Clonal Selection Algorithm |
|
|
180 | (4) |
|
10.3.2 Artificial Immune Network |
|
|
184 | (1) |
|
10.3.3 Negative Selection Algorithm |
|
|
185 | (1) |
|
10.3.4 Dendritic Cell Algorithm |
|
|
186 | (1) |
|
|
187 | (4) |
|
11 Ant Colony Optimization |
|
|
191 | (10) |
|
|
191 | (1) |
|
11.2 Ant-Colony Optimization |
|
|
192 | (9) |
|
11.2.1 Basic ACO Algorithm |
|
|
194 | (1) |
|
11.2.2 ACO for Continuous Optimization |
|
|
195 | (3) |
|
|
198 | (3) |
|
|
201 | (16) |
|
|
201 | (2) |
|
12.2 Artificial Bee Colony Algorithm |
|
|
203 | (6) |
|
12.2.1 Algorithm Flowchart |
|
|
203 | (4) |
|
12.2.2 Modifications on ABC Algorithm |
|
|
207 | (1) |
|
12.2.3 Discrete ABC Algorithms |
|
|
208 | (1) |
|
12.3 Marriage in Honeybees Optimization |
|
|
209 | (1) |
|
12.4 Bee Colony Optimization |
|
|
210 | (1) |
|
12.5 Other Bee Algorithms |
|
|
211 | (6) |
|
12.5.1 Wasp Swarm Optimization |
|
|
212 | (1) |
|
|
213 | (4) |
|
13 Bacterial Foraging Algorithm |
|
|
217 | (10) |
|
|
217 | (2) |
|
13.2 Bacterial Foraging Algorithm |
|
|
219 | (3) |
|
13.3 Algorithms Inspired by Molds, Algae, and Tumor Cells |
|
|
222 | (5) |
|
|
224 | (3) |
|
|
227 | (10) |
|
|
227 | (1) |
|
14.2 Harmony Search Algorithm |
|
|
228 | (2) |
|
14.3 Variants of Harmony Search |
|
|
230 | (3) |
|
|
233 | (4) |
|
|
234 | (3) |
|
|
237 | (28) |
|
15.1 Glowworm-Based Optimization |
|
|
237 | (3) |
|
15.1.1 Glowworm Swarm Optimization |
|
|
238 | (1) |
|
|
239 | (1) |
|
15.2 Group Search Optimization |
|
|
240 | (1) |
|
15.3 Shuffled Frog Leaping |
|
|
241 | (1) |
|
15.4 Collective Animal Search |
|
|
242 | (1) |
|
|
243 | (3) |
|
|
246 | (1) |
|
15.7 Swarm Intelligence Inspired by Animal Behaviors |
|
|
247 | (8) |
|
15.7.1 Social Spider Optimization |
|
|
247 | (2) |
|
15.7.2 Fish Swarm Optimization |
|
|
249 | (1) |
|
15.7.3 Krill Herd Algorithm |
|
|
250 | (1) |
|
15.7.4 Cockroach-Based Optimization |
|
|
251 | (1) |
|
15.7.5 Seven-Spot Ladybird Optimization |
|
|
252 | (1) |
|
15.7.6 Monkey-Inspired Optimization |
|
|
252 | (1) |
|
15.7.7 Migrating-Based Algorithms |
|
|
253 | (1) |
|
|
254 | (1) |
|
15.8 Plant-Based Metaheuristics |
|
|
255 | (2) |
|
15.9 Other Swarm Intelligence-Based Metaheuristics |
|
|
257 | (8) |
|
|
259 | (6) |
|
16 Biomolecular Computing |
|
|
265 | (18) |
|
|
265 | (3) |
|
16.1.1 Biochemical Networks |
|
|
267 | (1) |
|
|
268 | (3) |
|
16.2.1 DNA Data Embedding |
|
|
271 | (1) |
|
|
271 | (12) |
|
16.3.1 Cell-Like P System |
|
|
272 | (1) |
|
16.3.2 Computing by P System |
|
|
273 | (2) |
|
|
275 | (2) |
|
16.3.4 Membrane-Based Optimization |
|
|
277 | (1) |
|
|
278 | (5) |
|
|
283 | (12) |
|
|
283 | (1) |
|
|
284 | (3) |
|
17.2.1 Graver's Search Algorithm |
|
|
286 | (1) |
|
|
287 | (8) |
|
17.3.1 Quantum-Inspired EAs |
|
|
287 | (3) |
|
17.3.2 Other Quantum-Inspired Hybrid Algorithms |
|
|
290 | (1) |
|
|
291 | (4) |
|
18 Metaheuristics Based on Sciences |
|
|
295 | (20) |
|
18.1 Search Based on Newton's Laws |
|
|
295 | (2) |
|
18.2 Search Based on Electromagnetic Laws |
|
|
297 | (1) |
|
18.3 Search Based on Thermal-Energy Principles |
|
|
298 | (1) |
|
18.4 Search Based on Natural Phenomena |
|
|
299 | (4) |
|
18.4.1 Search Based on Water Flows |
|
|
299 | (2) |
|
18.4.2 Search Based on Cosmology |
|
|
301 | (1) |
|
18.4.3 Black Hole-Based Optimization |
|
|
302 | (1) |
|
|
303 | (1) |
|
18.6 Algorithmic Chemistries |
|
|
304 | (2) |
|
18.6.1 Chemical Reaction Optimization |
|
|
304 | (2) |
|
18.7 Biogeography-Based Optimization |
|
|
306 | (3) |
|
18.8 Methods Based on Mathematical Concepts |
|
|
309 | (6) |
|
18.8.1 Opposition-Based Learning |
|
|
310 | (1) |
|
|
311 | (4) |
|
|
315 | (12) |
|
|
315 | (1) |
|
|
316 | (2) |
|
|
318 | (3) |
|
19.3.1 Simplex-based Memetic Algorithms |
|
|
320 | (1) |
|
19.4 Application: Searching Low Autocorrelation Sequences |
|
|
321 | (6) |
|
|
324 | (3) |
|
20 Tabu Search and Scatter Search |
|
|
327 | (10) |
|
|
327 | (4) |
|
20.1.1 Iterative Tabu Search |
|
|
330 | (1) |
|
|
331 | (2) |
|
|
333 | (4) |
|
|
335 | (2) |
|
21 Search Based on Human Behaviors |
|
|
337 | (10) |
|
21.1 Seeker Optimization Algorithm |
|
|
337 | (1) |
|
21.2 Teaching-Learning-Based Optimization |
|
|
338 | (2) |
|
21.3 Imperialist Competitive Algorithm |
|
|
340 | (2) |
|
21.4 Several Metaheuristics Inspired by Human Behaviors |
|
|
342 | (5) |
|
|
345 | (2) |
|
22 Dynamic, Multimodal, and Constrained Optimizations |
|
|
347 | (24) |
|
22.1 Dynamic Optimization |
|
|
347 | (3) |
|
|
348 | (1) |
|
22.1.2 Diversity Maintaining or Reinforcing |
|
|
348 | (1) |
|
22.1.3 Multiple Population Scheme |
|
|
349 | (1) |
|
22.2 Multimodal Optimization |
|
|
350 | (9) |
|
22.2.1 Crowding and Restricted Tournament Selection |
|
|
351 | (2) |
|
|
353 | (1) |
|
|
354 | (2) |
|
22.2.4 Clearing, Local Selection, and Demes |
|
|
356 | (1) |
|
|
357 | (2) |
|
22.2.6 Metrics for Multimodal Optimization |
|
|
359 | (1) |
|
22.3 Constrained Optimization |
|
|
359 | (12) |
|
22.3.1 Penalty Function Method |
|
|
360 | (3) |
|
22.3.2 Using Multiobjective Optimization Techniques |
|
|
363 | (2) |
|
|
365 | (6) |
|
23 Multiobjective Optimization |
|
|
371 | (42) |
|
|
371 | (2) |
|
23.2 Multiobjective Evolutionary Algorithms |
|
|
373 | (13) |
|
23.2.1 Nondominated Sorting Genetic Algorithm II |
|
|
374 | (3) |
|
23.2.2 Strength Pareto Evolutionary Algorithm 2 |
|
|
377 | (1) |
|
23.2.3 Pareto Archived Evolution Strategy (PAES) |
|
|
378 | (1) |
|
23.2.4 Pareto Envelope-Based Selection Algorithm |
|
|
379 | (1) |
|
23.2.5 MOEA Based on Decomposition (MOEA/D) |
|
|
380 | (1) |
|
|
381 | (3) |
|
23.2.7 Nondominated Sorting |
|
|
384 | (1) |
|
23.2.8 Multiobjective Optimization Based on Differential Evolution |
|
|
385 | (1) |
|
|
386 | (3) |
|
23.4 Many-Objective Optimization |
|
|
389 | (5) |
|
23.4.1 Challenges in Many-Objective Optimization |
|
|
389 | (2) |
|
23.4.2 Pareto-Based Algorithms |
|
|
391 | (2) |
|
23.4.3 Decomposition-Based Algorithms |
|
|
393 | (1) |
|
23.5 Multiobjective Immune Algorithms |
|
|
394 | (1) |
|
|
395 | (3) |
|
|
398 | (1) |
|
23.8 Tabu/Scatter Search Based Multiobjective Optimization |
|
|
399 | (1) |
|
|
400 | (2) |
|
23.10 Revolutionary MOEAs |
|
|
402 | (11) |
|
|
403 | (10) |
Appendix A Benchmarks |
|
413 | (18) |
Index |
|
431 | |