Muutke küpsiste eelistusi

Secure Data Mining 1st ed. 2024 [Kõva köide]

  • Formaat: Hardback, 280 pages, kõrgus x laius: 235x155 mm, 20 Illustrations, black and white; Approx. 280 p. 20 illus., 1 Hardback
  • Ilmumisaeg: 28-Aug-2024
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 038787965X
  • ISBN-13: 9780387879659
Teised raamatud teemal:
  • Kõva köide
  • Hind: 62,17 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 73,14 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
Secure Data Mining 1st ed. 2024
  • Formaat: Hardback, 280 pages, kõrgus x laius: 235x155 mm, 20 Illustrations, black and white; Approx. 280 p. 20 illus., 1 Hardback
  • Ilmumisaeg: 28-Aug-2024
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 038787965X
  • ISBN-13: 9780387879659
Teised raamatud teemal:

Data mining is a process to extract useful knowledge from large amounts of data. To conduct data mining, we often need to collect data. However, privacy concerns may prevent people from sharing the data and some types of information about the data. How we conduct data mining without breaching data privacy presents a challenge.

Secure Data Mining provides solutions to the problem of data mining without compromising data privacy. This professional book is designed for practitioners and researchers in industry, as well as a secondary textbook for advanced-level students in computer science.



This book provides solutions to the problem of data mining without compromising data privacy. This professional book is designed for practitioners and researchers in industry, as well as a secondary textbook for advanced-level students in computer science.

Preface.- Introduction.- Literature Review.- Fundamental Security and Privacy.- Privacy-Preserving Association Rule Mining.- Privacy-Preserving Sequential Pattern Mining.- Privacy-Preserving Naive Bayesian Classification.- Privacy-Preserving Decision Tree Classification.- Privacy-Preserving k-Nearest Neighbor Classification.- Privacy-Preserving Support Vector Machine Classification.- Privacy-Preserving k-Mean Clustering.- Privacy-Preserving k-Medoids Clustering.- Other Selected Topics.- Conclusion and Future Work.- Index.