Preface |
|
xiii | |
1 A Parallel Search Optimization Using an Adaptive State-Action Index Structure |
|
1 | (30) |
|
|
1 | (1) |
|
1.2 Significance of Research |
|
|
1 | (1) |
|
|
2 | (3) |
|
1.3.1 Task environment formulation |
|
|
4 | (1) |
|
|
4 | (1) |
|
1.3.3 Problem formulation |
|
|
4 | (1) |
|
|
5 | (2) |
|
|
7 | (1) |
|
|
8 | (8) |
|
|
16 | (2) |
|
|
18 | (8) |
|
|
19 | (1) |
|
|
19 | (2) |
|
1.8.3 Test sample analysis |
|
|
21 | (5) |
|
|
26 | (2) |
|
|
27 | (1) |
|
|
28 | (3) |
2 A Method of Policy Discovery for Storage and Data Management |
|
31 | (22) |
|
|
31 | (3) |
|
|
31 | (1) |
|
2.1.2 Review of literature |
|
|
32 | (2) |
|
|
34 | (8) |
|
2.2.1 State representation |
|
|
35 | (2) |
|
2.2.2 Relation representation |
|
|
37 | (1) |
|
2.2.3 Policy representation |
|
|
37 | (1) |
|
2.2.4 Activity representation |
|
|
37 | (1) |
|
|
38 | (1) |
|
2.2.6 Upper ontology of policies |
|
|
38 | (3) |
|
2.2.7 Semantics of policies |
|
|
41 | (1) |
|
2.3 Method of Policy Discovery |
|
|
42 | (7) |
|
2.3.1 Continuous policies |
|
|
42 | (1) |
|
|
43 | (1) |
|
|
44 | (1) |
|
2.3.4 Assign values to relations |
|
|
45 | (1) |
|
|
45 | (1) |
|
2.3.6 Compute uncertainty |
|
|
46 | (1) |
|
2.3.7 Hierarchy of policy relational model |
|
|
47 | (1) |
|
2.3.8 Granularity of relations |
|
|
47 | (1) |
|
2.3.9 Relevance of information |
|
|
47 | (1) |
|
2.3.10 Parameter estimation |
|
|
48 | (1) |
|
|
48 | (1) |
|
2.3.12 Policy decomposition |
|
|
49 | (1) |
|
2.4 Performance Evaluation |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
50 | (3) |
3 Knowledge-Based Policy Discovery for Storage and Data Management |
|
53 | (22) |
|
|
53 | (3) |
|
|
53 | (2) |
|
3.1.2 Review of literature |
|
|
55 | (1) |
|
|
56 | (3) |
|
|
56 | (1) |
|
|
57 | (2) |
|
|
59 | (5) |
|
|
59 | (1) |
|
3.3.2 Perception specification |
|
|
59 | (1) |
|
3.3.3 Action specification |
|
|
60 | (1) |
|
3.3.4 Environment specification |
|
|
61 | (2) |
|
|
63 | (1) |
|
3.3.6 Policy aspect inference algorithm |
|
|
63 | (1) |
|
3.4 Performance Evaluation |
|
|
64 | (6) |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
66 | (4) |
|
|
70 | (1) |
|
|
71 | (1) |
|
|
71 | (4) |
4 Stabilizing Read–Write Throughput of Transactional Memory for Contention Management |
|
75 | (28) |
|
|
75 | (2) |
|
|
75 | (1) |
|
4.1.2 Why STM performance is important |
|
|
75 | (1) |
|
|
76 | (1) |
|
|
76 | (1) |
|
4.2 Problem Statement and Goal |
|
|
77 | (6) |
|
4.2.1 Problem formulation |
|
|
77 | (5) |
|
4.2.2 Statement of problem |
|
|
82 | (1) |
|
4.3 Brief Review of the Literature |
|
|
83 | (4) |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
84 | (1) |
|
4.3.4 Ordinary statistics |
|
|
85 | (1) |
|
|
86 | (1) |
|
4.3.6 Qualitative analysis |
|
|
86 | (1) |
|
|
87 | (1) |
|
|
87 | (1) |
|
|
87 | (1) |
|
|
87 | (12) |
|
4.4.1 Physical assumption |
|
|
87 | (1) |
|
4.4.2 Information-theoretical description |
|
|
88 | (3) |
|
|
91 | (2) |
|
|
93 | (1) |
|
|
94 | (1) |
|
|
95 | (1) |
|
4.4.7 Throughput convergence |
|
|
95 | (1) |
|
|
95 | (4) |
|
|
99 | (1) |
|
4.5.1 Errors of simultaneous measurement |
|
|
99 | (1) |
|
4.5.2 Conjecture of partition function |
|
|
99 | (1) |
|
4.5.3 Error detection of entangled states |
|
|
100 | (1) |
|
|
100 | (3) |
5 Parallel Search Optimization for Storage Virtualization |
|
103 | (32) |
|
|
103 | (1) |
|
5.2 Significance of Research |
|
|
104 | (1) |
|
|
105 | (5) |
|
5.3.1 Task environment formulation |
|
|
108 | (1) |
|
|
108 | (2) |
|
|
110 | (4) |
|
|
114 | (5) |
|
|
115 | (1) |
|
|
116 | (3) |
|
|
119 | (2) |
|
|
121 | (8) |
|
|
121 | (1) |
|
|
122 | (1) |
|
5.7.3 Discussion on parallelism |
|
|
123 | (3) |
|
|
126 | (2) |
|
|
128 | (1) |
|
|
128 | (1) |
|
5.7.7 Performance metrics |
|
|
128 | (1) |
|
|
129 | (3) |
|
|
131 | (1) |
|
|
132 | (3) |
6 Finite Automata for Evaluating Testbed Resource Contention |
|
135 | (14) |
|
|
135 | (1) |
|
|
135 | (1) |
|
|
136 | (4) |
|
|
139 | (1) |
|
|
140 | (1) |
|
|
141 | (1) |
|
6.5 Performance Evaluation |
|
|
142 | (2) |
|
|
144 | (2) |
|
|
146 | (1) |
|
|
146 | (3) |
7 Adaptive Buffer Tuning for Data Intensive Algebraic Operations |
|
149 | (12) |
|
|
149 | (1) |
|
|
149 | (1) |
|
|
150 | (1) |
|
|
151 | (2) |
|
|
153 | (1) |
|
|
154 | (5) |
|
|
159 | (1) |
|
|
159 | (2) |
8 A Quantum Method of Representing Recurring Data Deduplication Policy States |
|
161 | (14) |
|
|
161 | (1) |
|
|
162 | (3) |
|
8.2.1 State representation using momentum basis |
|
|
162 | (1) |
|
8.2.2 State representation using orthogonal basis |
|
|
163 | (1) |
|
8.2.3 Policy vector space |
|
|
164 | (1) |
|
8.2.4 Statement of problem |
|
|
165 | (1) |
|
|
165 | (2) |
|
|
165 | (1) |
|
8.3.2 Vector expansion method |
|
|
166 | (1) |
|
8.3.3 Ordinary statistics |
|
|
166 | (1) |
|
|
167 | (1) |
|
|
167 | (2) |
|
8.4.1 Measuring job states |
|
|
167 | (1) |
|
8.4.2 Compute schedule states |
|
|
168 | (1) |
|
8.4.3 Compute policy states |
|
|
168 | (1) |
|
8.4.4 Information theoretical description |
|
|
169 | (1) |
|
|
169 | (3) |
|
8.5.1 Structure of policy state |
|
|
169 | (2) |
|
8.5.2 Policy state persistence model |
|
|
171 | (1) |
|
|
172 | (1) |
|
|
173 | (2) |
9 QAM—Quantum Availability Mechanics without Recovery for Storage and Data Management |
|
175 | (10) |
|
|
175 | (1) |
|
9.1.1 Nonreversible operations |
|
|
175 | (1) |
|
9.1.2 Reversible operations |
|
|
176 | (1) |
|
|
176 | (1) |
|
9.2.1 State representation using canonical basis |
|
|
176 | (1) |
|
|
176 | (1) |
|
9.2.3 Statement of problem |
|
|
177 | (1) |
|
|
177 | (1) |
|
9.3 Review of Possible Solutions |
|
|
177 | (3) |
|
|
178 | (1) |
|
|
178 | (1) |
|
9.3.3 Evolution with wave mechanics |
|
|
178 | (1) |
|
9.3.4 Transactional management |
|
|
178 | (1) |
|
|
178 | (1) |
|
|
179 | (1) |
|
9.3.7 Multicast with synchronous computation |
|
|
179 | (1) |
|
9.3.8 Quantum teleportation |
|
|
179 | (1) |
|
|
180 | (4) |
|
9.4.1 Throughput trajectory |
|
|
180 | (1) |
|
|
180 | (1) |
|
|
181 | (1) |
|
9.4.4 Job decomposition and composition |
|
|
182 | (1) |
|
9.4.5 Uncertainty principle of availability |
|
|
182 | (1) |
|
9.4.6 Quantum availability operator |
|
|
183 | (1) |
|
|
183 | (1) |
|
9.4.8 Diagonalization by job observable |
|
|
183 | (1) |
|
|
184 | (1) |
10 A Quantum Method with Unknown Future Tasks to Resolve Storage Message Conflicts |
|
185 | (10) |
|
|
185 | (1) |
|
|
185 | (2) |
|
10.2.1 Message representation |
|
|
185 | (1) |
|
10.2.2 State representation using orthogonal basis |
|
|
186 | (1) |
|
10.2.3 Message conflict relation |
|
|
186 | (1) |
|
10.2.4 Statement of problem |
|
|
186 | (1) |
|
10.3 Review of Possible Solutions |
|
|
187 | (2) |
|
|
187 | (1) |
|
10.3.2 Transactional management |
|
|
187 | (1) |
|
10.3.3 Protocol management |
|
|
187 | (1) |
|
10.3.4 Message persistence |
|
|
188 | (1) |
|
10.3.5 Arbitrary delay of messages |
|
|
188 | (1) |
|
10.3.6 Encoding order of messages |
|
|
188 | (1) |
|
10.3.7 In memory nuffering and sorting |
|
|
188 | (1) |
|
|
189 | (1) |
|
10.3.9 Resequencing messages by eigenbasis |
|
|
189 | (1) |
|
|
189 | (4) |
|
10.4.1 Measuring message states |
|
|
189 | (1) |
|
10.4.2 Asserting message orders |
|
|
189 | (1) |
|
10.4.3 Diagonalization by message persistence |
|
|
189 | (1) |
|
10.4.4 Quantum messages and resequencing |
|
|
190 | (1) |
|
10.4.5 Concurrency of message sending |
|
|
190 | (1) |
|
10.4.6 Information of messages |
|
|
191 | (2) |
|
|
193 | (1) |
|
|
193 | (2) |
11 A Quantum Automatic Controlled Method for Storage pest Coverage |
|
195 | (12) |
|
|
195 | (1) |
|
|
196 | (2) |
|
11.2.1 Alternative solutions |
|
|
196 | (1) |
|
|
196 | (1) |
|
11.2.2 Program configuration |
|
|
197 | (1) |
|
|
197 | (1) |
|
|
197 | (1) |
|
|
198 | (7) |
|
11.3.1 Test coverage pattern |
|
|
198 | (1) |
|
11.3.2 Complete test pattern |
|
|
198 | (1) |
|
11.3.3 Sequential test pattern |
|
|
199 | (1) |
|
11.3.4 Phase elimination pattern |
|
|
199 | (1) |
|
11.3.5 Projective test pattern |
|
|
200 | (1) |
|
11.3.6 Joint state pattern |
|
|
200 | (1) |
|
11.3.7 Measurement apparatus pattern |
|
|
201 | (1) |
|
11.3.8 Tensored test pattern |
|
|
201 | (1) |
|
11.3.9 Entanglement construction pattern |
|
|
201 | (1) |
|
11.3.10 Entanglement measurement pattern |
|
|
202 | (1) |
|
11.3.11 A sample of entanglement measurement |
|
|
202 | (1) |
|
11.3.12 Diagonalization and superposition pattern |
|
|
203 | (1) |
|
11.3.13 Request response based measurement pattern |
|
|
203 | (1) |
|
11.3.14 Automatic controlled test pattern |
|
|
204 | (1) |
|
11.3.15 How many test cases |
|
|
204 | (1) |
|
|
205 | (2) |
12 Protection Mechanics with a Quantum Operator for Anomaly Attacks |
|
207 | |
|
|
207 | (1) |
|
12.2 Problem Statement and Objectives |
|
|
208 | (4) |
|
12.2.1 Problem formulation |
|
|
208 | (2) |
|
12.2.1.1 State representation using orthonormal basis |
|
|
208 | (1) |
|
12.2.1.2 Ground state of Schrodinger Hamiltonian |
|
|
209 | (1) |
|
12.2.1.3 Evolution of Schrodinger Potential |
|
|
209 | (1) |
|
12.2.1.4 Attack composition |
|
|
210 | (1) |
|
12.2.2 Statement of problem |
|
|
210 | (1) |
|
|
211 | (1) |
|
12.3 State-of-the-Art and Existing Methodologies |
|
|
212 | (3) |
|
|
212 | (1) |
|
12.3.2 Quantum clustering |
|
|
212 | (1) |
|
|
213 | (1) |
|
12.3.4 Statistical mechanics |
|
|
213 | (1) |
|
|
214 | (1) |
|
12.3.6 Fuzzy-evolutionary clustering algorithm |
|
|
214 | (1) |
|
12.4 Barriers, Issues, and Open Problems |
|
|
215 | (2) |
|
|
215 | (1) |
|
12.4.2 Errors of simultaneous measurement |
|
|
216 | (1) |
|
12.4.3 Analyzing attacks with large data sets |
|
|
216 | (1) |
|
12.4.4 Learning properties of known attacks |
|
|
216 | (1) |
|
12.4.5 Error detection of entangled attacks |
|
|
217 | (1) |
|
|
217 | (13) |
|
|
218 | (4) |
|
12.5.2 Collapse points of attack structures |
|
|
222 | (1) |
|
|
222 | (1) |
|
12.5.4 Theorems of quantum detection |
|
|
223 | (4) |
|
12.5.5 Quantum detection algorithm |
|
|
227 | (2) |
|
12.5.6 Attack entanglement |
|
|
229 | (1) |
|
|
229 | (1) |
|
12.5.8 Data and attribute selection |
|
|
230 | (1) |
|
|
230 | |
|
12.6.1 Data preprocessing |
|
|
230 | (1) |
|
12.6.2 Determine cluster center |
|
|
231 | |