Muutke küpsiste eelistusi

Selected Works II: Probability Theory and Mathematical Statistics 1992 ed. [Pehme köide]

  • Formaat: Paperback / softback, 597 pages, kõrgus x laius: 235x155 mm, kaal: 932 g, XVIII, 597 p., 1 Paperback / softback
  • Sari: Springer Collected Works in Mathematics
  • Ilmumisaeg: 19-Jul-2019
  • Kirjastus: Springer
  • ISBN-10: 9402417095
  • ISBN-13: 9789402417098
Teised raamatud teemal:
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 597 pages, kõrgus x laius: 235x155 mm, kaal: 932 g, XVIII, 597 p., 1 Paperback / softback
  • Sari: Springer Collected Works in Mathematics
  • Ilmumisaeg: 19-Jul-2019
  • Kirjastus: Springer
  • ISBN-10: 9402417095
  • ISBN-13: 9789402417098
Teised raamatud teemal:
The creative work of Andrei N. Kolmogorov is exceptionally wide-ranging. In his studies on trigonometric and orthogonal series, the theory of measure and inte­gral, mathematical logic, approximation theory, geometry, topology, functional analysis, classical mechanics, ergodic theory, superposition of functions, and in­ formation theory, he solved many conceptual and fundamental problems and posed new questions which gave rise to a great deal of further research. Kolmogorov is one of the founders of the Soviet school of probability theory, mathematical statistics, and the theory of turbulence. In these areas he obtained a number of central results, with many applications to mechanics, geophysics, linguistics and biology, among other subjects. This edition includes Kolmogorov's most important papers on mathematics and the natural sciences. It does not include his philosophical and ped­agogical studies, his articles written for the "Bolshaya Sovetskaya Entsiklopediya", his papers on prosody and applications of mathematics or his publications on general questions. The material of this edition was selected and compiled by Kolmogorov himself.

The first volume consists of papers on mathematics and also on turbulence and classical mechanics. The second volume is devoted to probability theory and mathematical statistics. The focus of the third volume is on information theory and the theory of algorithms.


1. On convergence of series whose terms are determined by random
events.-
2. On the law of large numbers.-
3. On a limit formula of A.
Khinchin.-
4. On sums of independent random variables.-
5. On the law of the
iterated logarithm.-
6. On the law of large numbers.-
7. General measure
theory and probability calculus.-
8. On the strong law of large numbers.-
9.
On analytical methods in probability theory.-
10. The waiting problem.-
11.
The method of the median in the theory of errors.-
12. A generalization of
the Laplace-Lyapunov Theorem.-
13. On the general form of a homogeneous
stochastic process.-
14. On computing the mean Brownian area.-
15. On the
empirical determination of a distribution law.-
16. On the limit theorems of
probability theory.-
17. On the theory of continuous random processes.-
18.
On the problem of the suitability of forecasting formulas found by
statistical methods.-
19. Random motions.-
20. Deviations from Hardys
formulas under partial isolation.-
21. On the theory of Markov chains.-
22.
On the statistical theory of metal crystallization.-
23. Markov chains with a
countable number of possible states.-
24. On the reversibility of the
statistical laws of nature.-
25. Solution of a biological problem.-
26. On a
new confirmation of Mendels laws.-
27. Stationary sequences in Hubert
space.-
28. Interpolation and extrapolation of stationary random
sequences...-
29. On the logarithmic normal distribution of particle sizes
under grinding.-
30. Justification of the method of least squares.-
31. A
formula of Gauss in the method of least squares.-
32. Branching random
processes.-
33. Computation of final probabilities for branching random
processes..-
34. Statistical theory of oscillations with continuous
spectrum.-
35. On sums of a random number of random terms.-
36. A local limit
theorem for classical Markov chains.-
37. Solution of a probabilistic problem
relating to the mechanism of bed formation.-
38. Unbiased estimators.-
39. On
differentiability of transition probabilities of time-homogeneous Markov
processes with a countable number of states.-
40. A generalization of
Poisson s formula for a sample from a finite set.-
41. Some recent work on
limit theorems in probability theory.-
42. On A.V. Skorokhods convergence.-
43. Two uniform limit theorems for sums of independent terms.-
44. Random
functions and limit theorems.-
45. On the properties of P. Levys
concentration functions.-
46. Transition of branching processes to diffusion
processes and related genetic problems.-
47. On the classes ?(n) of Fortet
and Blanc-Lapierre.-
48. On conditions of strong mixing of a Gaussian
stationary process.-
49. Random functions of several variables almost all
realizations of which are periodic.-
50. An estimate of the parameters of a
complex stationary Gaussian Markov process.-
51. On the approximation of
distributions of sums of independent terms by infinitely divisible
distributions.-
52. Estimators of spectral functions of random processes.-
53. On the logical foundations of probability theory.- Comments On the papers
on probability theory and mathematical statistics.- Analytical methods in
probability theory (No. 9).- Markov processes with a countable number of
states (No. 10).- Homogeneous random processes (No. 13).- Homogeneous Markov
processes (No. 39).- Branching processes (Nos. 25, 32, 33, 46).- Stationary
sequences (No. 27).- Stationary processes (No. 48).- Statistics of processes
(No. 50).- Spectral theory of stationary processes (No. 34).- Spectral
representation of random processes (Nos. 47, 49).- Brownian motion (Nos. 14,
19, 24).- Markov chains with a countable number of states (No. 23).- Wald
identities (No. 35).- S-Convergence (No. 42).- Uniform limit theorems (Nos.
43, 51).- Concentration functions (No. 45).- Empirical distributions (No.
15).- The method of least squares (Nos. 30, 31).- Unbiased estimators (No.
38).- Statistical prediction (No. 18).- On inter-bed washout (No. 37).