Muutke küpsiste eelistusi

Self-Consistent Methods for Composites: Vol.1: Static Problems Second Edition 2025 [Kõva köide]

  • Formaat: Hardback, 514 pages, kõrgus x laius: 235x155 mm, 144 Illustrations, black and white; XVI, 514 p. 144 illus., 1 Hardback
  • Sari: Solid Mechanics and Its Applications 282
  • Ilmumisaeg: 10-Sep-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031965922
  • ISBN-13: 9783031965920
  • Kõva köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • See raamat ei ole veel ilmunud. Raamatu kohalejõudmiseks kulub orienteeruvalt 2-4 nädalat peale raamatu väljaandmist.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 514 pages, kõrgus x laius: 235x155 mm, 144 Illustrations, black and white; XVI, 514 p. 144 illus., 1 Hardback
  • Sari: Solid Mechanics and Its Applications 282
  • Ilmumisaeg: 10-Sep-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031965922
  • ISBN-13: 9783031965920

This book introduces new chapters that delve into the structure of electromagnetic and elastic fields in anisotropic media, the detailed solutions of the conductivity and elasticity problems for spherical radially transverse isotropic inclusions, the analysis of the neutral inclusion problem in static conductivity and elasticity, and the homogenization problem for polycrystalline materials. In the second edition of this book, readers will find a comprehensive update on the application of self-consistent methods in material science, reflecting the advancements in computational capabilities since its first publication. It also emphasizes the growing importance of numerical methods, which have expanded the applicability of self-consistent methods, and includes updated references to the latest research in the field since 2008.

Static fields in homogeneous media with anisolated inclusion.-
Homogenous elastic media with the sources of external and internal stresses.-
Homogeneous media with an isolated inclusion.-  Crack in a homogeneous
elastic medium.