Muutke küpsiste eelistusi

Sentiment Analysis in the Bio-Medical Domain: Techniques, Tools, and Applications 1st ed. 2017 [Kõva köide]

  • Formaat: Hardback, 134 pages, kõrgus x laius: 235x155 mm, kaal: 458 g, 33 Illustrations, color; 12 Illustrations, black and white; XXIV, 134 p. 45 illus., 33 illus. in color., 1 Hardback
  • Sari: Socio-Affective Computing 7
  • Ilmumisaeg: 01-Feb-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319684671
  • ISBN-13: 9783319684673
Teised raamatud teemal:
  • Kõva köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 134 pages, kõrgus x laius: 235x155 mm, kaal: 458 g, 33 Illustrations, color; 12 Illustrations, black and white; XXIV, 134 p. 45 illus., 33 illus. in color., 1 Hardback
  • Sari: Socio-Affective Computing 7
  • Ilmumisaeg: 01-Feb-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319684671
  • ISBN-13: 9783319684673
Teised raamatud teemal:
The abundance of text available in social media and health-related forums and blogs have recently attracted the interest of the public health community to use these sources for opinion mining. This book presents a lexicon-based approach to sentiment analysis in the bio-medical domain, i.e., WordNet for Medical Events (WME). This book gives an insight in handling unstructured textual data and converting it to structured machine-processable data in the bio-medical domain.

The readers will discover the following key novelties:

1) development of a bio-medical lexicon: WME expansion and WME enrichment with additional features.;

2) ensemble of machine learning and computational creativity;

3) development of microtext analysis techniques to overcome the inconsistency in social communication.

It will be of interest to researchers in the fields of socially-intelligent human-machine interaction and biomedical text mining
Introduction.- Literature Survey.- SenticNet.- Contribution to Sentiment Analysis.- Conclusion and Future Work.- Index.
Mr. Ranjan Satapathy is currently pursuing Ph.D., at the School of Computer Science and Engg., NTU Singapore under the supervision of Dr. Erik Cambria. His major research interests are deep learning, sentiment analysis and natural language processing. He completed his Bachelor's degree in Computer Science and Engg., from IIIT-Bhubaneswar, India in 2013. He further recieved a M.Tech degree from  University of Hyderabad, India in 2016, with majors in Computer Science. During his pursuits of Master's degree, he joined Dr. Cambria's research group SenticNet as an intern, where he worked on bio-medical sentiment analysis. This exposure and a keen-to-learn attitude motivated him to apply for Ph.D under Dr. Cambria.