|
|
|
1 Mathematical Preliminaries |
|
|
3 | (12) |
|
|
3 | (1) |
|
|
3 | (1) |
|
|
4 | (6) |
|
1.3.1 Second-Order Tensors |
|
|
4 | (5) |
|
1.3.2 Third- and Fourth-Order Tensors |
|
|
9 | (1) |
|
1.4 Coordinate Transformation |
|
|
10 | (1) |
|
|
11 | (4) |
|
1.5.1 Gradient and Divergence. Taylor's Theorem |
|
|
11 | (1) |
|
1.5.2 The Divergence Theorem |
|
|
12 | (1) |
|
1.5.3 Time-Varying Fields |
|
|
12 | (1) |
|
|
13 | (2) |
|
|
15 | (36) |
|
|
15 | (1) |
|
2.2 Motion in a Rotating Coordinate System |
|
|
16 | (2) |
|
2.2.1 Vectors and Tensors |
|
|
16 | (1) |
|
2.2.2 Velocity and Acceleration |
|
|
17 | (1) |
|
|
18 | (2) |
|
|
20 | (3) |
|
2.4.1 Example 1: Pure Rotation |
|
|
20 | (1) |
|
2.4.2 Example 2: General Rigid Body Motion |
|
|
21 | (1) |
|
2.4.3 Example 3: Homogeneous Motion |
|
|
22 | (1) |
|
2.4.4 Example 4: Affine Motion |
|
|
22 | (1) |
|
|
23 | (6) |
|
2.5.1 Strain. Surface Change. Volume Change |
|
|
24 | (1) |
|
2.5.2 Rate of Local Motion |
|
|
25 | (2) |
|
2.5.3 Transport Theorem. Mass Balance |
|
|
27 | (2) |
|
2.6 Further Analysis of Simple Motions |
|
|
29 | (3) |
|
2.6.1 Example 3: Homogeneous Motion |
|
|
29 | (2) |
|
2.6.2 Example 4: Affine Motion |
|
|
31 | (1) |
|
|
32 | (1) |
|
2.8 Moments of the Stress Tensor |
|
|
33 | (3) |
|
|
36 | (1) |
|
|
37 | (14) |
|
2.10.1 Rigid-Perfectly Plastic Materials |
|
|
38 | (6) |
|
2.10.2 Material Parameters |
|
|
44 | (4) |
|
|
48 | (3) |
|
|
51 | (24) |
|
|
51 | (2) |
|
3.2 Governing Equations: Structural Motion |
|
|
53 | (3) |
|
|
55 | (1) |
|
|
56 | (6) |
|
3.3.1 Gravitational-Moment Tensor |
|
|
57 | (2) |
|
3.3.2 Tidal-Moment Tensor |
|
|
59 | (3) |
|
3.4 Governing Equations: Orbital Motion |
|
|
62 | (5) |
|
3.4.1 Circular Tidally-Locked Orbits |
|
|
64 | (3) |
|
|
67 | (8) |
|
3.5.1 Angular Momentum Balance |
|
|
67 | (1) |
|
|
68 | (2) |
|
3.5.3 Total Energy of a Deformable Gravitating Ellipsoid |
|
|
70 | (1) |
|
|
71 | (4) |
|
|
|
|
75 | (20) |
|
|
75 | (1) |
|
|
76 | (3) |
|
|
76 | (2) |
|
4.2.2 Non-dimensionalization |
|
|
78 | (1) |
|
|
78 | (1) |
|
4.3 Equilibrium Landscape |
|
|
79 | (7) |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
84 | (2) |
|
|
86 | (2) |
|
|
88 | (4) |
|
4.5.1 Material Parameters |
|
|
88 | (1) |
|
4.5.2 Near-Earth Asteroid Data |
|
|
88 | (1) |
|
|
89 | (3) |
|
|
92 | (3) |
|
|
92 | (3) |
|
|
95 | (34) |
|
|
95 | (1) |
|
|
96 | (5) |
|
|
97 | (1) |
|
|
98 | (1) |
|
5.2.3 Non-dimensionalization |
|
|
98 | (2) |
|
|
100 | (1) |
|
5.3 Example: Satellites of Oblate Primaries |
|
|
101 | (9) |
|
|
102 | (1) |
|
5.3.2 The Orbital Rate ωE11 |
|
|
103 | (1) |
|
5.3.3 Equilibrium Landscape |
|
|
103 | (7) |
|
5.4 Application: The Roche Problem |
|
|
110 | (6) |
|
5.4.1 Material Parameters |
|
|
111 | (1) |
|
|
112 | (1) |
|
5.4.3 Alternate Yield Criteria and Previous Work |
|
|
113 | (3) |
|
5.5 Application: Satellites of the Giant Planets |
|
|
116 | (9) |
|
|
118 | (2) |
|
|
120 | (1) |
|
|
120 | (5) |
|
|
125 | (4) |
|
|
126 | (3) |
|
|
129 | (34) |
|
|
129 | (1) |
|
|
130 | (5) |
|
|
131 | (1) |
|
|
132 | (1) |
|
6.2.3 Non-dimensionalization |
|
|
132 | (2) |
|
|
134 | (1) |
|
6.3 Example: Prolate Binary System |
|
|
135 | (2) |
|
6.3.1 B(0), B(1) and B(2) |
|
|
136 | (1) |
|
6.3.2 The Orbital Rate ωB |
|
|
137 | (1) |
|
6.4 Equilibrium Landscape |
|
|
137 | (8) |
|
6.5 Example: Fluid Binaries and the Roche Binary Approximation |
|
|
145 | (3) |
|
6.6 Application: Binary Asteroids |
|
|
148 | (10) |
|
|
151 | (3) |
|
|
154 | (1) |
|
|
155 | (2) |
|
|
157 | (1) |
|
|
158 | (5) |
|
|
158 | (5) |
|
|
|
|
163 | (16) |
|
|
163 | (1) |
|
|
164 | (15) |
|
|
165 | (2) |
|
|
167 | (5) |
|
7.2.3 Compatibility and Normality |
|
|
172 | (1) |
|
7.2.4 Stability at First-Order |
|
|
173 | (2) |
|
7.2.5 Stability at Second-Order |
|
|
175 | (1) |
|
7.2.6 Stability to Finite Perturbations |
|
|
175 | (2) |
|
|
177 | (2) |
|
|
179 | (28) |
|
|
179 | (1) |
|
|
180 | (2) |
|
|
182 | (5) |
|
|
182 | (3) |
|
|
185 | (2) |
|
8.4 Example: Rubble-Pile Asteroids |
|
|
187 | (9) |
|
8.4.1 Compatible Perturbations |
|
|
189 | (1) |
|
|
190 | (3) |
|
8.4.3 Stability to Finite Perturbations |
|
|
193 | (3) |
|
8.5 Application: Near-Earth Asteroids |
|
|
196 | (8) |
|
8.5.1 Near-Earth Asteroid Data |
|
|
196 | (2) |
|
|
198 | (2) |
|
8.5.3 Planetary Encounters |
|
|
200 | (4) |
|
|
204 | (3) |
|
|
205 | (2) |
|
|
207 | (30) |
|
|
207 | (1) |
|
|
208 | (3) |
|
9.2.1 Structural Deformation |
|
|
208 | (2) |
|
|
210 | (1) |
|
|
211 | (7) |
|
|
211 | (2) |
|
|
213 | (5) |
|
9.4 Example: Rubble-Pile Planetary Satellites |
|
|
218 | (10) |
|
|
218 | (3) |
|
9.4.2 Structural Stability |
|
|
221 | (1) |
|
|
222 | (3) |
|
9.4.4 Stability to Finite Structural Perturbations |
|
|
225 | (3) |
|
9.5 Application: Planetary Satellites |
|
|
228 | (7) |
|
|
228 | (5) |
|
9.5.2 Stability to Finite Structural Perturbations |
|
|
233 | (2) |
|
|
235 | (2) |
|
|
236 | (1) |
|
|
237 | (48) |
|
|
237 | (1) |
|
|
238 | (4) |
|
|
239 | (2) |
|
|
241 | (1) |
|
|
242 | (8) |
|
|
243 | (2) |
|
10.3.2 Admissible Perturbations |
|
|
245 | (2) |
|
|
247 | (3) |
|
|
250 | (1) |
|
10.5 Example: Planar Binary with Near-Spherical, Rigid Members |
|
|
250 | (2) |
|
10.6 Example: Rigid Binaries |
|
|
252 | (9) |
|
10.6.1 Orbital Kinetic Energy |
|
|
254 | (1) |
|
10.6.2 Structural Kinetic Energy |
|
|
255 | (1) |
|
|
256 | (1) |
|
|
256 | (5) |
|
10.7 Example: Rubble-Pile Binaries |
|
|
261 | (11) |
|
10.7.1 Orbital Kinetic Energy |
|
|
261 | (2) |
|
10.7.2 Structural Kinetic Energy |
|
|
263 | (1) |
|
|
264 | (1) |
|
|
265 | (5) |
|
10.7.5 Stability to Finite Structural Perturbations |
|
|
270 | (2) |
|
10.8 Application: Near-Earth Binaries |
|
|
272 | (9) |
|
|
272 | (3) |
|
|
275 | (1) |
|
|
276 | (1) |
|
|
276 | (1) |
|
10.8.5 Stability to Finite Structural Perturbations |
|
|
277 | (4) |
|
|
281 | (4) |
|
|
281 | (4) |
|
|
|
|
285 | (22) |
|
|
285 | (1) |
|
|
285 | (5) |
|
11.2.1 Non-dimensionalization |
|
|
288 | (1) |
|
|
289 | (1) |
|
11.3 Example: Prolate Asteroids |
|
|
290 | (15) |
|
|
291 | (1) |
|
11.3.2 Numerical Algorithm |
|
|
292 | (1) |
|
11.3.3 Application: Equilibrium Shapes |
|
|
293 | (5) |
|
11.3.4 Discussion: Dynamics of a Homogeneously Deforming Rigid---Plastic Ellipsoid |
|
|
298 | (7) |
|
|
305 | (2) |
|
|
305 | (2) |
|
|
307 | (30) |
|
|
307 | (1) |
|
|
308 | (2) |
|
|
310 | (2) |
|
|
312 | (4) |
|
12.4.1 A Kinetic Theory Based Model for Loose Granular Aggregates |
|
|
312 | (3) |
|
12.4.2 Transition Criterion |
|
|
315 | (1) |
|
|
316 | (18) |
|
12.5.1 Outcomes with the Tensile Criterion |
|
|
317 | (2) |
|
|
319 | (2) |
|
12.5.3 Further Analysis of Flybys |
|
|
321 | (7) |
|
12.5.4 Outcomes with the Mohr-Coulomb Criterion |
|
|
328 | (1) |
|
12.5.5 The Effect of Rotation Direction |
|
|
329 | (4) |
|
12.5.6 Different Initial Rotation Rates |
|
|
333 | (1) |
|
|
334 | (3) |
|
|
334 | (3) |
Appendix A Rate of Change of the Gravitational Shape Tensor |
|
337 | (4) |
Appendix B The Tidal Shape Tensor |
|
341 | (4) |
Appendix C Rate of Change of the Tidal Shape Tensor |
|
345 | (4) |
Index |
|
349 | |