Preface |
|
ix | |
|
Part I Special Relativity |
|
|
|
1 The Geometry of Special Relativity |
|
|
3 | (31) |
|
|
3 | (3) |
|
1.1.1 Classical Physical Systems |
|
|
3 | (1) |
|
|
4 | (2) |
|
|
6 | (14) |
|
1.2.1 Geometrical Symmetries of Classical Physics |
|
|
6 | (5) |
|
1.2.2 Active and Passive Transformations |
|
|
11 | (1) |
|
|
12 | (1) |
|
1.2.4 Topological Structure of the Lorentz Group |
|
|
13 | (4) |
|
1.2.5 Rotations and Boosts |
|
|
17 | (2) |
|
1.2.6 Simultaneous Dilations and Lorentz Transformations |
|
|
19 | (1) |
|
1.3 Time Dilation and Lorentz Contraction |
|
|
20 | (3) |
|
1.3.1 Arc Length and Proper Time |
|
|
20 | (1) |
|
|
21 | (1) |
|
1.3.3 Lorentz Contraction |
|
|
22 | (1) |
|
1.4 Examples and Paradoxes |
|
|
23 | (11) |
|
1.4.1 The Time Dilation Paradox |
|
|
23 | (2) |
|
|
25 | (2) |
|
|
27 | (1) |
|
1.4.4 The Bandits and the Train |
|
|
27 | (1) |
|
1.4.5 The Prisoner's Escape |
|
|
28 | (1) |
|
|
29 | (3) |
|
|
32 | (2) |
|
|
34 | (29) |
|
|
34 | (5) |
|
|
39 | (9) |
|
2.2.1 Conservation Laws Depending Only on Velocity |
|
|
40 | (5) |
|
2.2.2 Conservation Laws including Position |
|
|
45 | (3) |
|
2.3 Lagrangian Particle Mechanics |
|
|
48 | (3) |
|
2.4 Lagrangian Field Theory |
|
|
51 | (12) |
|
2.4.1 Internal Symmetries and Conservation Laws |
|
|
52 | (3) |
|
2.4.2 Invariance under the Poincare Group |
|
|
55 | (3) |
|
2.4.3 Symmetrization of the Stress Tensor |
|
|
58 | (5) |
|
3 Relativistic Electrodynamics |
|
|
63 | (32) |
|
3.1 Lagrangian Formulation |
|
|
63 | (5) |
|
3.1.1 The Free Maxwell Field |
|
|
63 | (3) |
|
3.1.2 Maxwell Field with Source |
|
|
66 | (2) |
|
3.2 Potentials and Fields of a Point Charge |
|
|
68 | (8) |
|
3.2.1 The Action for a Point Charge |
|
|
68 | (2) |
|
3.2.2 Green's Function for the Wave Equation |
|
|
70 | (5) |
|
3.2.3 "In" and "Out" Fields |
|
|
75 | (1) |
|
3.3 Radiation from a Point Charge |
|
|
76 | (4) |
|
3.3.1 The Lienard--Wiechert Potential |
|
|
76 | (2) |
|
3.3.2 The Fields of a Point Charge |
|
|
78 | (2) |
|
3.4 Regularization and Renormalization |
|
|
80 | (15) |
|
3.4.1 Particle Motion with Radiation Reaction |
|
|
84 | (5) |
|
3.4.2 Conservation of Energy |
|
|
89 | (1) |
|
|
90 | (5) |
|
Part II General Relativity |
|
|
|
4 The Principle of Equivalence |
|
|
95 | (5) |
|
4.1 Gravitational and Inertial Mass |
|
|
95 | (1) |
|
4.2 The Eotvos Experiment |
|
|
96 | (1) |
|
4.3 Gravitation and Geometry |
|
|
97 | (1) |
|
4.4 The Equivalence Principle Revisited |
|
|
98 | (2) |
|
|
100 | (32) |
|
|
100 | (15) |
|
|
102 | (2) |
|
|
104 | (5) |
|
|
109 | (6) |
|
|
115 | (6) |
|
|
115 | (1) |
|
|
116 | (2) |
|
5.2.3 Parallel Transport of Tensors and Tensor Densities |
|
|
118 | (1) |
|
5.2.4 Covariant Derivatives |
|
|
119 | (2) |
|
5.3 Pviemannian Manifolds |
|
|
121 | (11) |
|
5.3.1 Relation between Affine Connection and Metric |
|
|
123 | (1) |
|
5.3.2 Symmetries of the Riemann Tensor |
|
|
124 | (3) |
|
5.3.3 Flatness and Curvature |
|
|
127 | (5) |
|
|
132 | (30) |
|
6.1 Motion in Curved Spacetime |
|
|
132 | (6) |
|
6.1.1 Program for a Theory of Gravity |
|
|
132 | (1) |
|
6.1.2 Classical Equations in Covariant Form |
|
|
132 | (5) |
|
|
137 | (1) |
|
6.2 The Gravitational Field |
|
|
138 | (12) |
|
6.2.1 Einstein's Equation in Empty Space |
|
|
138 | (4) |
|
6.2.2 Alternative Theories |
|
|
142 | (1) |
|
6.2.3 The Source of Gravity |
|
|
143 | (1) |
|
6.2.4 Action Principle Formulation |
|
|
144 | (6) |
|
|
150 | (12) |
|
6.3.1 Simplifying the Field Equation |
|
|
150 | (1) |
|
6.3.2 Recovering Newton's Law |
|
|
151 | (3) |
|
|
154 | (8) |
|
7 The Schwarzschild Solution |
|
|
162 | (38) |
|
|
162 | (4) |
|
7.2 The Exterior Solution |
|
|
166 | (4) |
|
7.3 Classic Tests of General Relativity |
|
|
170 | (14) |
|
7.3.1 Precession of the Perihelion of Mercury |
|
|
171 | (5) |
|
7.3.2 Bending of Starlight |
|
|
176 | (3) |
|
7.3.3 Gravitational Redshift |
|
|
179 | (1) |
|
7.3.4 What Do They Really Test? |
|
|
180 | (4) |
|
7.4 The Interior Solution |
|
|
184 | (7) |
|
7.5 The Schwarzschild Singularity |
|
|
191 | (9) |
|
7.5.1 Kruskal Coordinates |
|
|
193 | (2) |
|
7.5.2 Geometry of the Equatorial Surface |
|
|
195 | (2) |
|
7.5.3 Tidal Stress near r = 0 |
|
|
197 | (3) |
|
8 Conservation and Cosmology |
|
|
200 | (20) |
|
|
200 | (3) |
|
8.1.1 Scalar Conservation Laws |
|
|
200 | (1) |
|
8.1.2 The Energy--Momentum Pseudotensor |
|
|
201 | (2) |
|
8.2 The Universe at Large |
|
|
203 | (7) |
|
|
204 | (4) |
|
8.2.2 The Robertson--Walker Metric |
|
|
208 | (1) |
|
8.2.3 Redshift and Luminosity |
|
|
209 | (1) |
|
8.3 General Relativity and Cosmology |
|
|
210 | (10) |
|
8.3.1 The Friedman Universe |
|
|
210 | (4) |
|
8.3.2 The Cosmological Constant |
|
|
214 | (1) |
|
8.3.3 Singularities in the Robertson-Walker Metric |
|
|
215 | (5) |
|
|
220 | (3) |
|
Appendix A Compendium of Formulas |
|
|
223 | (7) |
|
|
230 | (4) |
|
|
230 | (1) |
|
|
231 | (3) |
Index |
|
234 | |