Muutke küpsiste eelistusi

SiGe-based Re-engineering of Electronic Warfare Subsystems 1st ed. 2017 [Kõva köide]

  • Formaat: Hardback, 329 pages, kõrgus x laius: 235x155 mm, kaal: 6506 g, 118 Illustrations, black and white; XX, 329 p. 118 illus., 1 Hardback
  • Sari: Signals and Communication Technology
  • Ilmumisaeg: 28-Oct-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319474022
  • ISBN-13: 9783319474021
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 329 pages, kõrgus x laius: 235x155 mm, kaal: 6506 g, 118 Illustrations, black and white; XX, 329 p. 118 illus., 1 Hardback
  • Sari: Signals and Communication Technology
  • Ilmumisaeg: 28-Oct-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319474022
  • ISBN-13: 9783319474021
This book provides readers a thorough understanding of the applicability of new-generation silicon-germanium (SiGe) electronic subsystems for electronic warfare and defensive countermeasures in military contexts. It explains in detail the theoretical and technical background, and addresses all aspects of the integration of SiGe as an enabling technology for maritime, land, and airborne / spaceborne electronic warfare, including research, design, development, and implementation. The coverage is supported by mathematical derivations, informative illustrations, practical examples, and case studies. While SiGe technology provides speed, performance, and price advantages in many markets, to date only limited information has been available on its use in electronic warfare systems, especially in developing nations. Addressing that need, this book offers essential engineering guidelines that especially focus on the speed and reliability of current-generation SiGe circuits and highlight em

erging innovations that help to ensure the sustainable long-term integration of SiGe into electronic warfare systems.

Introduction.- Charged Particle-Beam Acceleration and Lasers.- Radar Modelling: Subsystems and Technologies.- Electronic Countermeasures and Directed Energy Weapons.- Unmanned Aerial Systems.- Subsystem Bandwidth Requirements for Military Applications.- An Overview of SiGe: Where is it Used in the Military .- SiGe Integration into Electronic Warfare.- SiGe and Radiation: Electronic Warfare in Space.- Key Factors of High-Performance Electronic Warfare Design: Practical Examples and Case Studies.
1 SiGe Based Re-engineering of Electronic Warfare Subsystems
1(28)
1.1 Introduction to Electronic Warfare
1(3)
1.2 Information Warfare and Terrorism
4(2)
1.3 Electronic Countermeasures
6(3)
1.4 Directed Energy Weapons
9(2)
1.5 Unmanned Aerial Vehicles in EW
11(2)
1.6 Military Spectral Bands
13(3)
1.7 SiGe Overview
16(2)
1.8 SiGe Integration into EW
18(1)
1.9 SiGe and Radiation (Space EW)
19(1)
1.10 Radar and Countermeasures
20(4)
1.11 The Missile and EW
24(2)
1.12 Microwave Photonics
26(1)
1.13 Conclusion
26(3)
References
27(2)
2 Charged Particle-Beam Acceleration and Lasers: Contextualizing Technologies that Shaped Electronic Warfare
29(38)
2.1 Introduction
29(1)
2.2 Charged Particle-Beam Accelerator
30(5)
2.3 The History of the Laser
35(1)
2.4 The Basic Principles of Laser Physics
36(10)
2.5 Types of Lasers
46(13)
2.5.1 Semiconductor Lasers
48(7)
2.5.2 Solid-State Lasers
55(1)
2.5.3 Gas Lasers
55(1)
2.5.4 Chemical Lasers
56(1)
2.5.5 Liquid Dye Lasers
57(1)
2.5.6 Other Types of Lasers
57(2)
2.6 Laser Optimization
59(5)
2.7 Conclusion
64(3)
References
64(3)
3 Electronic Warfare Laser Driver Principles: High-Powered Directed Energy Beam Generation
67(34)
3.1 Introduction
67(1)
3.2 Laser Systems Markets in Military and Defense Environment
68(3)
3.3 Optoelectronic Communication
71(1)
3.4 Laser Diode Equivalent Models
72(8)
3.4.1 The Single Resonance Model
72(6)
3.4.2 The Multiple Resonance Model
78(2)
3.5 Laser Drivers
80(15)
3.5.1 Single Transistor Current Source
80(7)
3.5.2 Dual Transistor Current Source
87(1)
3.5.3 Dual Transistor Differential Current Source
88(5)
3.5.4 Op-Amp Current Source
93(2)
3.6 Laser Driver Performance
95(2)
3.7 Conclusion
97(4)
References
98(3)
4 Electronic Warfare Optoelectronic Receiver Fundamentals: Applications and Research Opportunities
101(32)
4.1 Introduction
101(3)
4.2 Optoelectronic Communication
104(1)
4.3 Optical Medium Signal Degradation
105(1)
4.4 Optical Link Trans-Impedance Amplifiers
106(15)
4.4.1 Photodiode Capacitance
111(1)
4.4.2 Photodiode Active Area
111(1)
4.4.3 Large Feedback Resistor
112(1)
4.4.4 Low Bias Current
112(1)
4.4.5 High Photodiode Shunt Resistance
112(1)
4.4.6 Photovoltaic Mode
113(1)
4.4.7 Photoconductive Mode
113(1)
4.4.8 External Shielding
114(1)
4.4.9 Feedback Capacitor
114(1)
4.4.10 Power Consumption
114(1)
4.4.11 Noise Performance
115(1)
4.4.12 Input Offset Voltage (Transistor Matching)
115(1)
4.4.13 Input Bias Current
116(1)
4.4.14 Transconductance
117(1)
4.4.15 fT and fmax
118(2)
4.4.16 Economic Considerations
120(1)
4.5 Oscillations in Trans-Impedance Amplifiers
121(5)
4.6 Noise in Trans-Impedance Amplifiers
126(3)
4.7 Performance Characteristics of Trans-Impedance Amplifiers
129(1)
4.8 Conclusion
130(3)
References
130(3)
5 Electronic Countermeasures and Directed Energy Weapons: Innovative Optoelectronics Versus Brute Force
133(34)
5.1 Introduction
133(1)
5.2 Laser Rangefinders
134(16)
5.2.1 Time-to-Digital Converter
135(3)
5.2.2 Pulsed Time-of-Flight
138(2)
5.2.3 Avalanche Transistor
140(2)
5.2.4 Continuous-Wave Time-of-Flight
142(2)
5.2.5 The Frequency of Light
144(1)
5.2.6 Radiative Principles
145(5)
5.3 SiGe Quantum Cascade Lasers (Terahertz Radiation)
150(5)
5.3.1 QCL Structures
152(1)
5.3.2 QCL Band Structure
153(2)
5.4 Laser Weapons
155(9)
5.4.1 Tactical Lasers
156(1)
5.4.2 Strategic Lasers
157(1)
5.4.3 Laser Recharging Unit
158(3)
5.4.4 Laser Target Material
161(1)
5.4.5 Topical Research
162(2)
5.5 Conclusion
164(3)
References
165(2)
6 Frequency Response of Optoelectronic Receivers: The Motivation for Faster Transistors
167(34)
6.1 Introduction
167(3)
6.2 Photodetector Bandwidth
170(7)
6.3 Transimpedance Amplifier Bandwidth
177(17)
6.3.1 Low-Frequency Operation
182(2)
6.3.2 Bipolar Transistor Small-Signal Equivalent Circuit
184(1)
6.3.3 Mid-frequency Operation
185(3)
6.3.4 High-Frequency Operation
188(6)
6.4 Detecting a Laser Pulse
194(3)
6.5 Conclusion
197(4)
Appendix 1 Miller's Theorem
197(2)
References
199(2)
7 SiGe for Radiation Hardening: Spearheading Electronic Warfare in Space
201(34)
7.1 Introduction
201(3)
7.2 Research on the Radiation Effects on Applied BiCMOS Circuits
204(3)
7.3 X-band Frequency Spectrum
207(2)
7.4 Radiation Effects on Electronic Devices
209(10)
7.4.1 Total-Ionizing Dose
212(3)
7.4.2 Displacement Damage
215(1)
7.4.3 Single-Event Upsets
216(3)
7.5 CMOS and BiCMOS Process Flow
219(2)
7.6 Radiation Effects on CMOS Transistors
221(4)
7.7 Radiation Effects on BiCMOS Transistors
225(2)
7.8 Radiation Effects on Optoelectronic Components
227(1)
7.9 Space Radiation Effects Program
228(2)
7.10 Conclusion
230(5)
References
231(4)
8 Microwave Photonics: Complementing Light-Wave Technology with High-Speed Electronics
235(34)
8.1 Introduction
235(2)
8.2 Distinguishing Between the Microwave and Optical Domain
237(2)
8.3 Two Light Sources; One Microwave Frequency
239(10)
8.3.1 Achieving THz Microwave Signals
243(1)
8.3.2 Optical Couplers
243(3)
8.3.3 Optical Beating
246(1)
8.3.4 Optical Heterodyning
247(2)
8.4 Fiber-Wireless Networks
249(4)
8.4.1 RF-over-fiber
250(1)
8.4.2 IF-over-fiber
250(1)
8.4.3 Baseband-over-fiber
251(1)
8.4.4 Modulation
252(1)
8.4.5 Multiplexing
252(1)
8.5 MWP EW Applications
253(7)
8.5.1 Remote Transmitters
254(1)
8.5.2 Remote Receivers
255(1)
8.5.3 Antenna Remoting
255(1)
8.5.4 Aircraft and Naval Vessel Information Distribution
256(1)
8.5.5 Radar and EW Receivers
257(1)
8.5.6 LiNbO3 and the Mach-Zehnder Principle
258(2)
8.6 SiGe HBTs and SiGe HPTs in MWP
260(5)
8.7 Conclusion
265(4)
References
266(3)
9 The Future of Electronic Warfare: Potential Contributions by SiGe
269(32)
9.1 Introduction
269(5)
9.2 Cognitive EW
274(4)
9.3 Active Electronically Scanned Array
278(4)
9.4 On-Board Digital Systems (Software Denned Radio)
282(4)
9.5 Precision-Guided Munitions
286(2)
9.6 UAVs
288(10)
9.7 Conclusion
298(3)
References
298(3)
10 A Review on Si, SiGe, GaN, SiC, InP and GaAs as Enabling Technologies in EW and Space
301
10.1 Introduction
301(2)
10.2 Semiconductor Process Highlights
303(11)
10.2.1 Process Highlights: Si
303(2)
10.2.2 Process Highlights: SiGe
305(2)
10.2.3 Process Highlights: GaN
307(1)
10.2.4 Process Highlights: SiC
308(2)
10.2.5 Process Highlights: InP
310(2)
10.2.6 Process Highlights: GaAs
312(2)
10.3 Material Performance: Si, SiGe, GaN, SiC, InP and GaAs
314(8)
10.3.1 Performance Comparison: Electron Bandgap (EV)
314(2)
10.3.2 Performance Comparison: Electron Mobility (cm2/V-s)
316(1)
10.3.3 Performance Comparison: Power Density (W/mm2)
317(1)
10.3.4 Performance Comparison: Breakdown Voltage (kV/cm)
318(1)
10.3.5 Performance Comparison: Thermal Conductivity (W/cm K)
319(1)
10.3.6 Performance Comparison: Cut-off Frequency FT (GHz)
320(2)
10.4 Semiconductor Material Desirability Based on Application Requirements
322(2)
10.4.1 Performance Comparison: Overall Desirability
322(2)
10.5 Cost of Semiconductor Processing
324(2)
10.6 Conclusion
326
References
327