Muutke küpsiste eelistusi

Signal Enhancement with Variable Span Linear Filters Softcover reprint of the original 1st ed. 2016 [Pehme köide]

  • Formaat: Paperback / softback, 172 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 25 Illustrations, black and white; IX, 172 p. 25 illus., 1 Paperback / softback
  • Sari: Springer Topics in Signal Processing 7
  • Ilmumisaeg: 09-Dec-2018
  • Kirjastus: Springer Verlag, Singapore
  • ISBN-10: 9811357099
  • ISBN-13: 9789811357091
Teised raamatud teemal:
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 172 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 25 Illustrations, black and white; IX, 172 p. 25 illus., 1 Paperback / softback
  • Sari: Springer Topics in Signal Processing 7
  • Ilmumisaeg: 09-Dec-2018
  • Kirjastus: Springer Verlag, Singapore
  • ISBN-10: 9811357099
  • ISBN-13: 9789811357091
Teised raamatud teemal:
This book introduces readers to the novelconcept of variable span speech enhancement filters, and demonstrates how itcan be used for effective noise reduction in various ways. Further, the bookprovides the accompanying Matlab code, allowing readers to easily implement themain ideas discussed. Variable span filters combine the ideas of optimal linearfilters with those of subspace methods, as they involve the jointdiagonalization of the correlation matrices of the desired signal and thenoise. The book shows how some well-known filter designs, e.g. the minimumdistortion, maximum signal-to-noise ratio, Wiener, and tradeoff filters (includingtheir new generalizations) can be obtained using the variable span filterframework. It then illustrates how the variable span filters can be applied invarious contexts, namely in single-channel STFT-based enhancement, inmultichannel enhancement in both the time and STFT domains, and, lastly, intime-domain binaural enhancement. In these contexts, the properties of thesefilters are analyzed in terms of their noise reduction capabilities and desiredsignal distortion, and the analyses are validated and further explored insimulations.

Introduction.- General Concept with Filtering Vectors.- General Concept with Filtering Matrices.- Single-Channel Signal Enhancement in the STFT Domain.- Multichannel Signal Enhancement in the Time Domain.- Multichannel Signal Enhancement in the STFT Domain.- Binaural Signal Enhancement in the Time Domain.