Muutke küpsiste eelistusi

Silicon VLSI Technology: Fundamentals, Practice, and Modeling [Pehme köide]

  • Formaat: Paperback / softback, 832 pages, kõrgus x laius x paksus: 239x193x36 mm, kaal: 1460 g
  • Ilmumisaeg: 25-Jul-2000
  • Kirjastus: Pearson
  • ISBN-10: 0130850373
  • ISBN-13: 9780130850379
Teised raamatud teemal:
  • Pehme köide
  • Hind: 244,89 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 832 pages, kõrgus x laius x paksus: 239x193x36 mm, kaal: 1460 g
  • Ilmumisaeg: 25-Jul-2000
  • Kirjastus: Pearson
  • ISBN-10: 0130850373
  • ISBN-13: 9780130850379
Teised raamatud teemal:

Unique in approach, this book provides an integrated view of silicon technology--with an emphasis on modern computersimulation. It describes not only the manufacturing practice associated with the technologies used in silicon chip fabrication, but also the underlying scientific basis for those technologies.Modern CMOS Technology. Crystal Growth, Wafer Fabrication and Basic Properties of Silicon Wafers. Semiconductor Manufacturing--Clean Rooms, Wafer Cleaning and Gettering. Lithography. Thermal Oxidation and the Si/SiO2 Interface. Dopant Diffusion. Ion Implantation. Thin Film Diffusion. Etching. Backend Technology. For anyone interested in Fabrication Processes.

Preface xi
Introduction and Historical Perspective
1(48)
Introduction
1(6)
Integrated Circuits and the Planar Process---Key Inventions That Made It All Possible
7(6)
Semiconductors
13(20)
Semiconductor Devices
33(8)
PN Diodes
33(3)
MOS Transistors
36(3)
Bipolar Junction Transistors
39(2)
Semiconductor Technology Families
41(2)
Modern Scientific Discovery---Experiments, Theory, and Computer Simulation
43(2)
The Plan For This Book
45(1)
Summary of Key Ideas
46(1)
References
46(1)
Problems
47(2)
Modern CMOS Technology
49(44)
Introduction
49(1)
CMOS Process Flow
50(40)
The Beginning---Choosing a Substrate
51(1)
Active Region Formation
52(5)
Process Option for Device Isolation---Shallow Trench Isolation
57(3)
N and P Well Formation
60(3)
Process Options for Active Region and Well Formation
63(8)
Gate Formation
71(5)
Tip or Extension (LDD) Formation
76(4)
Source/Drain Formation
80(2)
Contact and Local Interconnect Formation
82(2)
Multilevel Metal Formation
84(6)
Summary of Key Ideas
90(1)
Probems
91(2)
Crystal Growth, Wafer Fabrication and Basic Properties of Silicon Wafers
93(58)
Introduction
93(1)
Historical Development and Basic Concepts
93(16)
Crystal Structure
94(3)
Defects in Crystals
97(4)
Raw Materials and Purification
101(1)
Czochralski and Float-Zone Crystal Growth Methods
102(3)
Wafer Preparation and Specification
105(4)
Manufacturing Methods and Equipment
109(2)
Measurement Methods
111(10)
Electrical Measurements
111(1)
Hot Point Probe
112(1)
Sheet Resistance
113(2)
Hall Effect Measurements
115(2)
Physical Measurements
117(1)
Defect Etches
117(1)
Fourier Transform Infrared Spectroscopy (FTIR)
118(1)
Electron Microscopy
119(2)
Models and Simulation
121(23)
Czochralski Crystal Growth
122(3)
Dopant Incorporation during CZ Crystal Growth
125(3)
Zone Refining and FZ Growth
128(3)
Point Defects
131(7)
Oxygen in Silicon
138(4)
Carbon in Silicon
142(1)
Simulation
143(1)
Limits and Future Trends in Technologies and Models
144(2)
Summary of Key Ideas
146(1)
References
147(1)
Problems
148(3)
Semiconductor Manufacturing---Clean Rooms, Wafer Cleaning, and Gettering
151(50)
Introduction
151(3)
Historical Development and Basic Concepts
154(11)
Contamination Reduction: Clean Factories
157(2)
Contamination Reduction: Wafer Cleaning
159(2)
Contamination Reduction: Gettering
161(4)
Manufacturing Methods and Equipment
165(4)
Contamination Reduction: Clean Factories
165(1)
Contamination Reduction: Wafer Cleaning
166(1)
Contamination Reduction: Gettering
167(2)
Measurement Methods
169(11)
Contamination Reduction: Clean Factories
169(4)
Contamination Reduction: Wafer Cleaning
173(3)
Contamination Reduction: Gettering
176(4)
Models and Simulation
180(13)
Contamination Reduction: Clean Factories
181(3)
Contamination Reduction: Wafer Cleaning
184(2)
Contamination Reduction: Gettering
186(1)
Making the Metal Atoms Mobile
186(1)
Metal Diffusion to the Gettering Site
187(3)
Trapping the Metal Atoms at the Gettering Site
190(3)
Limits and Future Trends in Technologies and Models
193(3)
Summary of Key Ideas
196(1)
References
196(2)
Problems
198(3)
Lithography
201(86)
Introduction
201(2)
Historical Development and Basic Concepts
203(31)
Light Sources
206(2)
Wafer Exposure Systems
208(1)
Optics Basics---Ray Tracing and Diffraction
209(3)
Projection Systems (Fraunhofer Diffraction)
212(7)
Contact and Proximity Systems (Fresnel Diffraction)
219(2)
Photoresists
221(2)
g-line and i-line Resists
223(2)
Deep Ultraviolet (DUV) Resists
225(2)
Basic Properties and Characterization of Resists
227(3)
Mask Engineering---Optical Proximity Correction and Phase Shifting
230(4)
Manufacturing Methods and Equipment
234(7)
Wafer Exposure Systems
234(4)
Photoresists
238(3)
Measurement Methods
241(5)
Measurement of Mask Features and Defects
242(2)
Measurement of Resist Patterns
244(1)
Measurement of Etched Features
244(2)
Models and Simulation
246(26)
Wafer Exposure Systems
247(6)
Optical Intensity Pattern in the Photoresist
253(6)
Photoresist Exposure
259(1)
g-line and i-line DNQ Resists
259(4)
DUV Resists
263(1)
Postexposure Bake (PEB)
264(1)
g-line and i-line DNQ Resists
264(2)
DUV Resists
266(1)
Photoresist Developing
267(3)
Photoresist Postbake
270(1)
Advanced Mask Engineering
271(1)
Limits and Future Trends in Technologies and Models
272(9)
Electron Beam Lithography
273(2)
X-ray Lithography
275(2)
Advanced Mask Engineering
277(1)
New Resists
278(3)
Summary of Key Ideas
281(1)
References
281(2)
Problems
283(4)
Thermal Oxidation and the Si/SiO2 Interface
287(84)
Introduction
287(3)
Historical Development and Basic Concepts
290(6)
Manufacturing Methods and Equipment
296(2)
Measurement Methods
298(14)
Physical Measurements
299(1)
Optical Measurements
299(2)
Electrical Measurements---The MOS Capacitor
301(11)
Models and Simulation
312(47)
First-Order Planar Growth Kinetic---The Linear Parabolic Model
313(9)
Other Models for Planar Oxidation Kinetics
322(4)
Thin Oxide SiO2 Growth Kinetics
326(2)
Dependence of Growth Kinetics on Pressure
328(1)
Dependence of Growth Kinetics on Crystal Orientation
329(3)
Mixed Ambient Growth Kinetics
332(1)
2D SiO2 Growth Kinetics
333(6)
Advanced Point Defect Based Models for Oxidation
339(4)
Substrate Doping Effects
343(2)
Polysilicon Oxidation
345(2)
Si3N4 Growth and Oxidation Kinetics
347(3)
Silicide Oxidation
350(2)
Si/SiO2 Interface Charges
352(5)
Complete Oxidation Module Simulation
357(2)
Limits and Future Trends in Technologies and Models
359(2)
Summary of Key Ideas
361(1)
References
361(3)
Problems
364(7)
Dopant Diffusion
371(80)
Introduction
371(3)
Historical Development and Basic Concepts
374(18)
Dopant Solid Solubility
375(2)
Diffusion from a Macroscopic Viewpoint
377(2)
Analytic Solutions of the Diffusion Equation
379(1)
Gaussian Solution in an Infinite Medium
380(1)
Gaussian Solution Near a Surface
381(1)
Error-Function Solution in an Infinite Medium
382(2)
Error-Function Solution Near a Surface
384(2)
Intrinsic Diffusion Coefficients of Dopants in Silicon
386(2)
Effect of Successive Diffusion Steps
388(1)
Design and Evaluation of Diffused Layers
389(3)
Summary of Basic Diffusion Concepts
392(1)
Manufacturing Methods and Equipment
392(3)
Measurement Methods
395(8)
SIMS
396(1)
Spreading Resistance
397(1)
Sheet Resistance
398(1)
Capacitance Voltage
399(1)
TEM Cross Section
399(1)
2D Electrical Measurements Using Scanning Probe Microscopy
400(2)
Inverse Electrical Measurements
402(1)
Models and Simulation
403(36)
Numerical Solutions of the Diffusion Equation
403(3)
Modifications to Fick's Laws to Account for Electric Field Effects
406(3)
Modifications to Fick's Laws to Account for Concentration-Dependent Diffusion
409(4)
Segregation
413(2)
Interfacial Dopant Pileup
415(2)
Summary of the Macroscopic Diffusion Approach
417(1)
The Physical Basis for Diffusion at an Atomic Scale
417(2)
Oxidation-Enhanced or -Retarded Diffusion
419(3)
Dopant Diffusion Occurs by Both I and V
422(4)
Activation Energy for Self-Diffusion and Dopant Diffusion
426(1)
Dopant-Defect Interactions
426(6)
Chemical Equilibrium Formulation for Dopant-Defect Interactions
432(2)
Simplified Expression for Modeling
434(2)
Charge State Effects
436(3)
Limits and Future Trends in Technologies and Models
439(3)
Doping Methods
440(1)
Advanced Dopant Profile Modeling---Fully Kinetic Description of Dopant-Defect Interactions
440(2)
Summary of Key Ideas
442(1)
References
443(2)
Problems
445(6)
Ion Implantation
451(58)
Introduction
451(1)
Historical Development and Basic Concepts
451(12)
Implants in Real Silicon---The Role of the Crystal Structure
461(2)
Manufacturing Methods and Equipment
463(6)
High-Energy Implants
466(2)
Ultralow Energy Implants
468(1)
Ion Beam Heating
469(1)
Measurement Methods
469(1)
Models and Simulations
470(29)
Nuclear Stopping
471(2)
Nonlocal Electronic Stopping
473(1)
Local Electronic Stopping
474(1)
Total Stopping Powers
475(1)
Damage Production
476(3)
Damage Annealing
479(3)
Solid-Phase Epitaxy
482(2)
Dopant Activation
484(2)
Transient-Enhanced Diffusion
486(2)
Atomic-Understanding of TED
488(9)
Effects on Devices
497(2)
Limits and Future Trends in Technologies and Models
499(1)
Summary of Key Ideas
500(1)
References
500(2)
Problems
502(7)
Thin Film Deposition
509(100)
Introduction
509(2)
Historical Development and Basic Concepts
511(43)
Chemical Vapor Deposition (CVD)
512(1)
Atmospheric Pressure Chemical Vapor Deposition (APCVD)
513(12)
Low-Pressure Chemical Vapor Deposition (LPCVD)
525(2)
Plasma-Enhanced Chemical Vapor Deposition (PECVD)
527(3)
High-Density Plasma Chemical Vapor Deposition (HDPCVD)
530(1)
Physical Vapor Deposition (PVD)
530(1)
Evaporation
531(8)
Sputter Deposition
539(15)
Manufacturing Methods
554(18)
Epitaxial Silicon Deposition
556(2)
Polycrystalline Silicon Deposition
558(3)
Silicon Nitride Deposition
561(2)
Silicon Dioxide Deposition
563(2)
Al Deposition
565(1)
Ti and Ti-W Deposition
566(1)
W Deposition
567(1)
TiSi2 and WSi2 Deposition
567(1)
TiN Deposition
568(2)
Cu Deposition
570(2)
Measurement Methods
572(1)
Models and Simulation
573(28)
Models for Deposition Simulations
573(1)
Models in Physically Based Simulators Such as SPEEDIE
574(8)
Models for Different Types of Deposition Systems
582(5)
Comparing CVD and PVD and Typical Parameter Values
587(3)
Simulations of Deposition Using a Physically Based Simulator, SPEEDIE
590(8)
Other Deposition Simulations
598(3)
Limits and Future Trends in Technologies and Models
601(1)
Summary of Key Ideas
602(1)
References
603(2)
Problems
605(4)
Etching
609(72)
Introduction
609(3)
Historical Development and Basic Concepts
612(25)
Wet Etching
612(7)
Plasma Etching
619(2)
Plasma Etching Mechanisms
621(7)
Types of Plasma Etch Systems
628(8)
Summary of Plasma Systems and Mechanisms
636(1)
Manufacturing Methods
637(13)
Plasma Etching Conditions and Issues
638(5)
Plasma Etch Methods for Various Films
643(1)
Plasma Etching Silicon Dioxide
644(3)
Plasma Etching Polysilicon
647(2)
Plasma Etching Aluminum
649(1)
Measurement Methods
650(3)
Models and Simulation
653(22)
Models for Etching Simulation
653(3)
Etching Models---Linear Etch Model
656(7)
Etching Models---Saturation/Adsorption Model for Ion-Enhanced Etching
663(6)
Etching Models---More Advanced Models
669(2)
Other Etching Simulations
671(4)
Limits and Future Trends in Technologies and Models
675(1)
Summary of Key Ideas
676(1)
References
677(2)
Problems
679(2)
Back-End Technology
681(106)
Introduction
681(6)
Historical Development and Basic Concepts
687(28)
Contacts
688(7)
Interconnects and Vias
695(12)
Dielectrics
707(8)
Manufacturing Methods and Equipment
715(10)
Silicided Gates and Source/Drain Regions
716(2)
First-Dielectric Processing
718(1)
Contact Formation
719(2)
Global Interconnects
721(2)
IMD Deposition and Planarization
723(1)
Via Formation
724(1)
Final Steps
725(1)
Measurement Methods
725(12)
Morphological Measurements
726(1)
Electrical Measurements
726(6)
Chemical and Structural Measurements
732(2)
Mechanical Measurements
734(3)
Models and Simulation
737(39)
Silicide Formation
738(6)
Chemical-Mechanical Polishing
744(2)
Reflow
746(7)
Grain Growth
753(9)
Diffusion in Polycrystalline Materials
762(3)
Electromigration
765(11)
Limits and Future Trends in Technologies and Models
776(4)
Summary of Key Ideas
780(1)
References
781(3)
Problems
784(3)
Appendices 787(18)
A.1 Standard Prefixes
787(1)
A.2 Useful Conversions
787(1)
A.3 Physical Constants
788(1)
A.4 Physical Properties of Silicon
788(1)
A.5 Properties of Insulators Used in Silicon Technology
789(1)
A.6 Color Chart for Deposited Si3N4 Films Observed Perpendicularly under Daylight Fluorescent Lighting
789(1)
A.7 Color Chart for Thermally Grown SiO2 Films Observed Perpendicularly under Daylight Fluorescent Lighting
790(1)
A.8 Irwin Curves
791(2)
A.9 Error Function
793(4)
A.10 List of Important Symbols
797(1)
A.11 List of Common Acronyms
798(3)
A.12 Tables in Text
801(1)
A.13 Answers to Selected Problems
802(3)
Index 805