Muutke küpsiste eelistusi

The Simplex Method of Linear Programming [Pehme köide]

  • Formaat: Paperback / softback, 64 pages, kõrgus x laius x paksus: 230x154x5 mm, kaal: 107 g
  • Sari: Dover Books on Mathema 1.4tics
  • Ilmumisaeg: 31-Jul-2015
  • Kirjastus: Dover Publications Inc.
  • ISBN-10: 048679685X
  • ISBN-13: 9780486796857
Teised raamatud teemal:
  • Pehme köide
  • Hind: 19,80 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 64 pages, kõrgus x laius x paksus: 230x154x5 mm, kaal: 107 g
  • Sari: Dover Books on Mathema 1.4tics
  • Ilmumisaeg: 31-Jul-2015
  • Kirjastus: Dover Publications Inc.
  • ISBN-10: 048679685X
  • ISBN-13: 9780486796857
Teised raamatud teemal:
Concise but detailed and thorough treatment discusses rudiments of simplex method for solving optimization problems. Sufficient material for students without a strong background in linear algebra; many and varied problems. 1961 edition.


This concise but detailed and thorough treatment discusses the rudiments of the well-known simplex method for solving optimization problems in linear programming. Geared toward undergraduate students, the approach offers sufficient material for readers without a strong background in linear algebra. Many different kinds of problems further enrich the presentation.
The text begins with examinations of the allocation problem, matrix notation for dual problems, feasibility, and theorems on duality and existence. Subsequent chapters address convex sets and boundedness, the prepared problem and boundedness and consistency, optimal points and motivation of the simplex method, and the simplex method and tableaux. The treatment concludes with explorations of the effectiveness of the simplex method and the solution of the dual problem. Two helpful Appendixes offer supplementary material.
Introduction 7
1 The Allocation Problem; Duality
2(1)
A typical problem and its companion (dual)
2 Matrix Notation for Dual Problems
3(2)
Definition of inequalities for matrices; notation for dual pair of problems
3 Feasibility; Theorems on Duality and Existence
5(1)
Fundamental theorems; see Appendix II
4 Convex Sets; Boundedness
6(5)
Linear inequalities; feasible and optimal points
5 The Prepared Problem; Boundedness and Consistency
11(6)
Systematic notation; slack and artificial variables; indicative vectors and consistency; optimal vectors
6 Optimal Points; Motivation of the Simplex Method
17(4)
Extreme points of a convex set; active vectors; the number of extreme feasible points is finite; a maximal extreme feasible point is optimal
7 The Simplex Method; Tableaux
21(9)
The initial tableau; sufficient condition for optimality; an example; calculation of successive tableaux; degeneracy; the final tableau
8 Effectiveness of the Simplex Method
30(2)
9 Solution of the Dual Problem
32(4)
Location in final tableau; example
Bibliography 36