About the Author |
|
xiii | |
About the Companion Website |
|
xiv | |
1 Introduction |
|
1 | (12) |
|
|
1 | (3) |
|
|
4 | (9) |
2 Wireless System Models |
|
13 | (76) |
|
|
13 | (14) |
|
2.1.1 Modulation and Coding Scheme and Link Adaptation |
|
|
24 | (2) |
|
|
26 | (1) |
|
2.2 DS-CDMA Basic Formulation |
|
|
27 | (16) |
|
2.2.1 Pulse-shaping Filter |
|
|
30 | (1) |
|
2.2.2 Discrete Time Model |
|
|
30 | (2) |
|
|
32 | (6) |
|
2.2.4 Matrix Formulation for DS/CDMA System Model |
|
|
38 | (3) |
|
2.2.5 Synchronous DS/CDMA System |
|
|
41 | (2) |
|
2.3 Performance Evaluation |
|
|
43 | (3) |
|
2.3.1 Signal to Interference plus Noise Ratio |
|
|
43 | (1) |
|
|
44 | (2) |
|
2.4 MIMO/OFDM System Model |
|
|
46 | (27) |
|
|
49 | (3) |
|
|
52 | (1) |
|
2.4.3 Single-user MIMO/OFDM |
|
|
53 | (11) |
|
|
55 | (9) |
|
2.4.4 Adaptive Resource Management |
|
|
64 | (5) |
|
2.4.5 Multi-User MIMO/OFDM |
|
|
69 | (2) |
|
2.4.6 Adaptive filtering in MIMO/OFDM System |
|
|
71 | (1) |
|
2.4.7 Performance Evaluation of MIMO/MBER System |
|
|
71 | (2) |
|
2.5 Adaptive Antenna Array |
|
|
73 | (7) |
|
2.5.1 Uniform Linear Array |
|
|
73 | (5) |
|
2.5.2 DS/CDMA with Antenna Array |
|
|
78 | (2) |
|
|
80 | (2) |
|
|
82 | (7) |
3 Adaptive Detection Algorithms |
|
89 | (38) |
|
|
89 | (1) |
|
3.2 The Conventional Detector |
|
|
90 | (1) |
|
|
91 | (18) |
|
3.3.1 Decorrelating Detector |
|
|
93 | (1) |
|
3.3.2 Minimum Mean-squared Error Detector |
|
|
93 | (2) |
|
|
95 | (1) |
|
|
95 | (10) |
|
3.3.4.1 Constrained Optimization |
|
|
96 | (9) |
|
3.3.5 Constant Modulus Approach |
|
|
105 | (2) |
|
|
107 | (2) |
|
|
109 | (9) |
|
|
109 | (2) |
|
|
111 | (2) |
|
3.4.2.1 MOE Detector with Single Constraint |
|
|
111 | (1) |
|
3.4.2.2 MOE Detector with Multiple Constraints |
|
|
112 | (1) |
|
3.4.3 Channel Estimation Techniques |
|
|
113 | (2) |
|
|
115 | (3) |
|
|
118 | (9) |
4 Robust RLS Adaptive Algorithms |
|
127 | (54) |
|
|
127 | (4) |
|
|
131 | (1) |
|
4.3 IQRD-Based Receivers with Fixed Constraints |
|
|
132 | (3) |
|
4.3.1 Direct-form MOE Detector |
|
|
132 | (1) |
|
4.3.2 MOE Detector based on IQRD-RLS and PLIC |
|
|
133 | (2) |
|
4.4 IQRD-based Receiver with Optimized Constraints |
|
|
135 | (4) |
|
4.5 Channel Estimation Techniques |
|
|
139 | (5) |
|
4.5.1 Noise Cancellation Schemes |
|
|
139 | (2) |
|
4.5.1.1 Adaptive Implementation of Improved cost function |
|
|
139 | (1) |
|
4.5.1.2 Adaptive Implementation of Modified Cost Function |
|
|
140 | (1) |
|
4.5.2 Adaptive Implementation of POR Method |
|
|
141 | (1) |
|
4.5.3 Adaptive Implementation of Capon Method |
|
|
142 | (2) |
|
4.6 New Robust Detection Technique |
|
|
144 | (4) |
|
4.7 Systolic Array Implementation |
|
|
148 | (5) |
|
|
153 | (10) |
|
|
153 | (2) |
|
|
155 | (3) |
|
|
158 | (2) |
|
|
160 | (2) |
|
|
162 | (1) |
|
|
163 | (4) |
|
Appendix 4.A Summary of Inverse QR Algorithm with Inverse Updating |
|
|
167 | (2) |
|
Appendix 4.B QR Decomposition Algorithms |
|
|
169 | (2) |
|
Appendix 4.C Subspace Tracking Algorithms |
|
|
171 | (2) |
|
|
173 | (8) |
5 Quadratically Constrained Simplified Robust Adaptive Detection |
|
181 | (44) |
|
|
181 | (6) |
|
5.2 Robust Receiver Design |
|
|
187 | (12) |
|
5.2.1 Quadratic Inequality Constraint |
|
|
187 | (7) |
|
|
188 | (1) |
|
|
189 | (2) |
|
5.2.1.3 A Simplified VL Approach |
|
|
191 | (3) |
|
5.2.2 Optimum Step-size Estimation |
|
|
194 | (1) |
|
5.2.3 Low-complexity Recursive Implementation based on PLIC |
|
|
195 | (3) |
|
5.2.4 Convergence Analysis |
|
|
198 | (1) |
|
|
199 | (3) |
|
|
202 | (11) |
|
|
213 | (2) |
|
Appendix 5.A Robust Recursive Conjugate Gradient (RCG) Algorithm |
|
|
215 | (2) |
|
|
217 | (8) |
6 Robust Constant Modulus Algorithms |
|
225 | (38) |
|
|
225 | (7) |
|
6.2 Robust LCCMA Formulation |
|
|
232 | (2) |
|
6.3 Low-complexity Recursive Implementation of LCCMA |
|
|
234 | (3) |
|
|
237 | (2) |
|
6.5 BSCMA with Quadratic Inequality Constraint |
|
|
239 | (2) |
|
6.6 Block Processing and Adaptive Implementation |
|
|
241 | (2) |
|
6.7 Simulation Results for Robust LCCMA |
|
|
243 | (3) |
|
6.8 Simulation Results for Robust BSCMA |
|
|
246 | (4) |
|
|
250 | (3) |
|
|
253 | (10) |
7 Robust Adaptive Beamforming |
|
263 | (82) |
|
|
263 | (16) |
|
7.2 Beamforming Formulation |
|
|
279 | (4) |
|
|
279 | (2) |
|
|
281 | (2) |
|
7.3 Robust Beamforming Design |
|
|
283 | (9) |
|
7.3.1 Adaptive Implementation |
|
|
288 | (4) |
|
7.4 Cooperative Joint Constraint Robust Beamforming |
|
|
292 | (4) |
|
7.4.1 Adaptive Implementation |
|
|
295 | (1) |
|
7.5 Robust Adaptive MVDR Beamformer with Single WC Constraint |
|
|
296 | (8) |
|
|
299 | (1) |
|
7.5.2 Eigendecomposition Method |
|
|
299 | (1) |
|
7.5.3 Taylor Series Approximation Method |
|
|
300 | (1) |
|
7.5.4 Adaptive MVDR Beamformer with Single WC Constraint |
|
|
300 | (6) |
|
7.5.4.1 Lagrange Multiplier Estimation |
|
|
301 | (2) |
|
7.5.4.2 Recursive Implementation |
|
|
303 | (1) |
|
7.6 Robust LCMV Beamforming with MBWC Constraints |
|
|
304 | (2) |
|
7.7 Geometric Interpretation |
|
|
306 | (4) |
|
7.7.1 Ellipsoidal Constraint Beamforming |
|
|
306 | (2) |
|
7.7.2 Worst-case Constraint Beamforming |
|
|
308 | (2) |
|
|
310 | (22) |
|
7.8.1 Simulations Results for Ellipsoidal Constraint Beamforming |
|
|
310 | (12) |
|
7.8.2 Simulation for WC Constraint Beamforming |
|
|
322 | (25) |
|
7.8.2.1 DOA Mismatch Scenario |
|
|
322 | (6) |
|
7.8.2.2 Small Angular Spread Scenario |
|
|
328 | (3) |
|
7.8.2.3 Large Angular Spread Scenario |
|
|
331 | (1) |
|
|
332 | (1) |
|
|
333 | (12) |
8 Minimum BER Adaptive Detection and Beamforming |
|
345 | (50) |
|
|
345 | (2) |
|
|
347 | (13) |
|
|
351 | (1) |
|
|
352 | (1) |
|
8.2.3 Gradient Newton Algorithms |
|
|
353 | (1) |
|
|
354 | (1) |
|
|
354 | (1) |
|
8.2.4 Normalized Gradient Algorithms |
|
|
354 | (1) |
|
|
355 | (1) |
|
|
355 | (1) |
|
8.2.5 Normalized Newton Gradient Algorithms |
|
|
355 | (1) |
|
8.2.5.1 Normalized-Newton-AMBER |
|
|
355 | (1) |
|
8.2.5.2 Normalized-Newton-LMBER |
|
|
356 | (1) |
|
|
356 | (4) |
|
8.3 MBER Simulation Results |
|
|
360 | (12) |
|
8.3.1 BER Performance versus SNR |
|
|
361 | (5) |
|
8.3.2 Convergence Rate Comparison |
|
|
366 | (4) |
|
8.3.3 BER Performance versus Number of Subscribers |
|
|
370 | (1) |
|
8.3.4 Computational Complexity |
|
|
371 | (1) |
|
8.4 MBER Spatial MUD in MIMO/OFDM Systems |
|
|
372 | (9) |
|
|
375 | (1) |
|
|
376 | (1) |
|
8.4.3 Gradient Newton Algorithms |
|
|
376 | (1) |
|
|
377 | (1) |
|
|
377 | (1) |
|
8.4.4 Normalized Gradient Algorithms |
|
|
377 | (1) |
|
|
378 | (1) |
|
|
378 | (1) |
|
8.4.5 Normalized Newton Gradient Algorithms |
|
|
378 | (1) |
|
8.4.5.1 Normalized-Newton-AMBER |
|
|
378 | (1) |
|
8.4.5.2 Normalized-Newton-LMBER |
|
|
379 | (1) |
|
|
379 | (2) |
|
8.5 MBER Simulation Results |
|
|
381 | (5) |
|
8.5.1 Convergence Rate Comparison |
|
|
382 | (2) |
|
8.5.2 BER Performance versus SNR |
|
|
384 | (2) |
|
|
386 | (1) |
|
|
387 | (8) |
Index |
|
395 | |