Muutke küpsiste eelistusi

Simulation of Fresh Concrete Flow: State-of-the Art Report of the RILEM Technical Committee 222-SCF 2014 ed. [Kõva köide]

Edited by , Edited by
  • Formaat: Hardback, 147 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 94 Illustrations, black and white; XX, 147 p. 94 illus., 1 Hardback
  • Sari: RILEM State-of-the-Art Reports 15
  • Ilmumisaeg: 10-Apr-2014
  • Kirjastus: Springer
  • ISBN-10: 9401788839
  • ISBN-13: 9789401788830
Teised raamatud teemal:
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 147 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 94 Illustrations, black and white; XX, 147 p. 94 illus., 1 Hardback
  • Sari: RILEM State-of-the-Art Reports 15
  • Ilmumisaeg: 10-Apr-2014
  • Kirjastus: Springer
  • ISBN-10: 9401788839
  • ISBN-13: 9789401788830
Teised raamatud teemal:

This work deals with numerical simulations of fresh concrete flows. After the first introductory chapter dealing with the various physical phenomena involved in flows of fresh cementitious materials, the aim of the second chapter is to give an overview of the work carried out on simulation of flow of cement-based materials using computational fluid dynamics (CFD). This includes governing equations, constitutive equations, analytical and numerical solutions, and examples showing simulations of testing, mixing and castings. The third chapter focuses on the application of Discrete Element Method (DEM) in simulating the flow of fresh concrete. The fourth chapter is an introductory text about numerical errors both in CFD and DEM whereas the fifth and last chapter give some recent examples of numerical simulations developed by various authors in order to simulate the presence of grains or fibers in a non-Newtonian cement matrix.

1 Physical Phenomena Involved in Flows of Fresh Cementitious Materials
1(24)
Nicolas Roussel
Annika Gram
1.1 Introduction
1(1)
1.2 Is Concrete a Discrete or a Continuum Material?
2(1)
1.3 Macroscopic Rheological Behavior
3(1)
1.4 Multi-scale Approach
4(2)
1.5 Particle Interactions
6(6)
1.5.1 Review of Interactions
6(1)
1.5.2 Brownian Forces and Colloidal Interactions at the Cement Paste Scale
6(1)
1.5.3 Direct Contact Network between Particles
7(1)
1.5.4 Hydrodynamic Interactions and Viscosity
8(2)
1.5.5 Relative Contributions of Yield Stress and Viscosity and Bingham Number
10(1)
1.5.6 Kinetic Energy and Reynolds Number
11(1)
1.6 Stability and Static Segregation
12(1)
1.7 Dynamic Segregation and Granular Blocking
13(3)
1.8 Fiber Orientation and Induced Anisotropy
16(1)
1.9 Thixotropy and Transient Behavior
17(2)
1.10 Behavior at the Walls
19(6)
1.10.1 Slip Velocity and Slip Layer
19(1)
1.10.2 Wall Effect
19(1)
1.10.3 Wall Roughness and Particles Size
20(1)
References
21(4)
2 Computational Fluid Dynamics
25(40)
Lars Thrane
Ana Bras
Paul Bakker
Wolfgang Brameshuber
Bogdan Cazacliu
Liberato Ferrara
Dimitri Feys
Mette Geiker
Annika Gram
Steffen Grunewald
Samir Mokeddem
Nicolas Roquet
Nicolas Roussel
Surendra Shah
Nathan Tregger
Stephan Uebachs
Frederick Van Waarde
Jon Elvar Wallevik
2.1 Introduction to Computational Fluid Dynamics
25(2)
2.2 Material Behaviour Law
27(2)
2.2.1 Governing Equations
27(1)
2.2.2 Constitutive Equations -- Generalised Newtonian Model
28(1)
2.3 Solving a Fluid Problem
29(4)
2.3.1 Global Analysis
29(1)
2.3.2 Dimensional Analysis of Concrete Flows
30(1)
2.3.2.1 Dimensional Analysis of Slump and Slump Flow Tests
30(1)
2.3.2.2 Standard Shear Flows in Industrial Practice
31(1)
2.3.2.3 Filling Prediction
32(1)
2.4 Ananlytical Solutions
33(6)
2.4.1 Free Surface Flow
33(1)
2.4.1.1 Slump and Slump Flow
33(2)
2.4.1.2 Channel Flow
35(2)
2.4.2 Confined Flow
37(2)
2.5 Numerical Solution
39(2)
2.6 Simulation of Fresh Cementitious Materials
41(24)
2.6.1 Standard Test Methods
41(3)
2.6.2 Viscometers
44(1)
2.6.3 Mixing
45(3)
2.6.4 Casting
48(1)
2.6.4.1 SCC Wall Casting
49(2)
2.6.4.2 Castings -- Consequences of Structural Build Up
51(2)
2.6.5 Industrial Applications
53(1)
2.6.5.1 Prediction of Flow in Pre-cambered Composite Beam
53(1)
2.6.5.2 Flow Simulation of Fresh Concrete under a Slip-Form Machine
54(3)
2.6.5.3 Flow Simulation of Nuclear Waste Disposal Filling
57(2)
References
59(6)
3 Simulation of Fresh Concrete Flow Using Discrete Element Method (DEM)
65(34)
Viktor Mechtcherine
Annika Gram
Knut Krenzer
Jorg-Henry Schwabe
Claudia Bellmann
Sergiy Shyshko
3.1 Introduction
65(2)
3.2 Discrete Element Method
67(5)
3.2.1 Governing Equations
67(1)
3.2.2 Solution Procedure
68(1)
3.2.3 Software Used in Concrete Engineering
69(1)
3.2.3.1 Particle Flow Code (PFC) from ITASCA
69(1)
3.2.3.2 EDEM from DEM Solutions
70(1)
3.2.3.3 Alternative DEM Software
71(1)
3.3 Simulating Concrete Flow Using DEM
72(10)
3.3.1 Discretisation of Concrete by Discrete Particles
72(1)
3.3.2 Rheological Model
73(2)
3.3.3 Constitutive Relationships
75(1)
3.3.4 Parameter Estimation
76(4)
3.3.5 Particle Size Effect and Dimensional Analysis
80(2)
3.4 Calibration and Verification
82(8)
3.4.1 Slump and Slump Flow
82(4)
3.4.2 J-Ring Test and L-Box Test
86(1)
3.4.2.1 J-Ring Test
86(1)
3.4.2.2 LBox Test
87(1)
3.4.3 Funnel Flow
88(1)
3.4.4 Casting
89(1)
3.5 Industrial Applications
90(4)
3.5.1 Mixing
90(1)
3.5.2 Filling
91(2)
3.5.3 Extrusion
93(1)
3.6 Future Perspectives
94(2)
3.7 Summary
96(3)
References
96(3)
4 Numerical Errors in CFD and DEM Modeling
99(26)
Jon Elvar Wallevik
Knut Krenzer
Jorg-Henry Schwabe
4.1 Introduction
99(1)
4.2 Basics of CFD -- Understanding the Source of Errors
100(6)
4.2.1 Taylor Approximation
101(2)
4.2.2 A Very Simple CFD Example -- Automatic Generation of Errors
103(3)
4.3 Numerical Errors (E1)
106(6)
4.3.1 Discretization Error
106(3)
4.3.2 Iterative Convergence Errors
109(2)
4.3.3 Round Off Errors
111(1)
4.4 Coding Errors (E2)
112(1)
4.5 User Error (E3)
112(1)
4.6 Error from Input Uncertainties (U1)
113(1)
4.7 Physical Model Uncertainty (U2)
114(6)
4.7.1 Choosing the Correct Material Model
114(1)
4.7.2 Implementation of Yield Stress
114(1)
4.7.2.1 A Theoretically Correct Bingham Presentation
114(1)
4.7.2.2 Viscoplastic Implementation for CFD
115(2)
4.7.2.3 Comparison of Different Viscoplastic Implementations
117(3)
4.8 Sources of Numerical Error in DEM Simulations
120(5)
4.8.1 Mono-disperse Particles
120(1)
4.8.2 Time Step Errors
120(1)
4.8.3 Density Scaling Errors
121(1)
4.8.4 Calibration Errors
122(1)
4.8.5 Particle Size
122(1)
4.8.6 Particle Shape
123(1)
References
123(2)
5 Advanced Methods and Future Perspectives
125(22)
Ksenija Vasilic
Mette Geiker
Jesper Hattel
Laetitia Martinie
Nicos Martys
Nicolas Roussel
Jon Spangenberg
5.1 Introduction
125(1)
5.2 Case Studies
126(21)
5.2.1 FEMLIP Method from EC Nantes
126(1)
5.2.2 Two-Phase Model from IBAC and IVT
127(3)
5.2.3 Dissipative Particle Dynamics from NIST
130(1)
5.2.3.1 Concrete as a Multi-scale Material
130(1)
5.2.3.2 Computational Models
131(2)
5.2.3.3 Some Fundamental Insights into Yield Stress
133(2)
5.2.3.4 Insights to the Effect of Particle Sizes and Shapes
135(2)
5.2.4 Prediction of Dynamic Segregation from DTU
137(1)
5.2.5 Fibre Orientation Modelling
137(1)
5.2.5.1 Industrial Flow
137(1)
5.2.5.2 Background
138(1)
5.2.5.3 Aligned Fibre Assumption
138(1)
5.2.5.4 Interactions between Fibres
139(1)
5.2.5.5 Yield Stress Effect
139(1)
5.2.5.6 Multi-fibres Approach
139(1)
5.2.5.7 Application to Shear Flow between Two Parallel Walls
140(1)
5.2.5.8 Industrial Application
140(2)
5.2.6 Fully Coupled Simulation of Suspension of non-Newtonian Fluid and Rigid Particles
142(1)
5.2.6.1 Modelling Strategy
142(1)
5.2.6.2 Level of Fluid: Fluid Dynamics Solver
142(1)
5.2.6.3 Level of Fluid: Free Surface Algorithm
142(1)
5.2.6.4 Level of Fluid-Particles Interaction: Immersed Boundary Method
143(1)
5.2.6.5 Level of Particles: Adaptive Sub-stepping Algorithm
143(1)
5.2.6.6 Level of Particles: Interaction of Particles
143(1)
5.2.6.7 Application to the Effect of Particles on Effective Rheological Properties
144(1)
5.2.6.8 Application to Dynamic Segregation in a Complex Flow
144(1)
References
145(2)
Author Index 147