Muutke küpsiste eelistusi

Simulation Modeling and Analysis with ARENA [Kõva köide]

(Professor, Department of Management Science and Information Systems, Rutgers Business School, Rutgers University, New Jersey), (Professor Department of Industrial and Systems Engineering, Rutgers University, New Jersey)
  • Formaat: Hardback, 456 pages, kõrgus x laius: 260x184 mm, kaal: 1110 g
  • Ilmumisaeg: 13-Aug-2007
  • Kirjastus: Academic Press Inc
  • ISBN-10: 0123705231
  • ISBN-13: 9780123705235
Teised raamatud teemal:
  • Formaat: Hardback, 456 pages, kõrgus x laius: 260x184 mm, kaal: 1110 g
  • Ilmumisaeg: 13-Aug-2007
  • Kirjastus: Academic Press Inc
  • ISBN-10: 0123705231
  • ISBN-13: 9780123705235
Teised raamatud teemal:
Simulation Modeling and Analysis with Arena is a highly readable textbook which treats the essentials of the Monte Carlo discrete-event simulation methodology, and does so in the context of a popular Arena simulation environment.? It treats simulation modeling as an in-vitro laboratory that facilitates the understanding of complex systems and experimentation with what-if scenarios in order to estimate their performance metrics. The book contains chapters on the simulation modeling methodology and the underpinnings of discrete-event systems, as well as the relevant underlying probability, statistics, stochastic processes, input analysis, model validation and output analysis. All simulation-related concepts are illustrated in numerous Arena examples, encompassing production lines, manufacturing and inventory systems, transportation systems, and computer information systems in networked settings.

· Introduces the concept of discrete event Monte Carlo simulation, the most commonly used methodology for modeling and analysis of complex systems
· Covers essential workings of the popular animated simulation language, ARENA, including set-up, design parameters, input data, and output analysis, along with a wide variety of sample model applications from production lines to transportation systems
· Reviews elements of statistics, probability, and stochastic processes relevant to simulation modeling
* Ample end-of-chapter problems and full Solutions Manual
* Includes CD with sample ARENA modeling programs
Preface xvii
Acknowledgments xxi
Introduction to Simulation Modeling
Systems and Models
1(1)
Analytical Versus Simulation Modeling
2(2)
Simulation Modeling and Analysis
4(1)
Simulation Worldviews
4(1)
Model Building
5(1)
Simulation Costs and Risks
6(1)
Example: A Production Control Problem
7(1)
Project Report
8(3)
Exercises
10(1)
Discrete Event Simulation
Elements of Discrete Event Simulation
11(2)
Examples of DES Models
13(2)
Single Machine
13(1)
Single Machine with Failures
13(1)
Single Machine with an Inspection Station and Associated Inventory
14(1)
Monte Carlo Sampling and Histories
15(4)
Example: Work Station Subject to Failures and Inventory Control
16(3)
DES Languages
19(5)
Exercises
20(4)
Elements of Probability and Statistics
Elementary Probability Theory
24(3)
Probability Spaces
25(1)
Conditional Probabilities
25(1)
Dependence and Independence
26(1)
Random Variables
27(1)
Distribution Functions
27(3)
Probability Mass Functions
28(1)
Cumulative Distribution Functions
28(1)
Probability Density Functions
28(1)
Joint Distributions
29(1)
Expectations
30(1)
Moments
30(2)
Correlations
32(1)
Common Discrete Distributions
33(3)
Generic Discrete Distribution
33(1)
Bernoulli Distribution
34(1)
Binomial Distribution
34(1)
Geometric Distribution
35(1)
Poisson Distribution
35(1)
Common Continuous Distributions
36(11)
Uniform Distribution
36(1)
Step Distribution
37(1)
Triangular Distribution
38(1)
Exponential Distribution
39(1)
Normal Distribution
40(1)
Lognormal Distribution
41(1)
Gamma Distribution
42(2)
Student's t Distribution
44(1)
F Distribution
45(1)
Beta Distribution
46(1)
Weibull Distribution
47(1)
Stochastic Processes
47(3)
Iid Processes
48(1)
Poisson Processes
48(1)
Regenerative (Renewal) Processes
49(1)
Markov Processes
49(1)
Estimation
50(1)
Hypothesis Testing
51(5)
Exercises
52(4)
Random Number and Variate Generation
Variate and Process Generation
56(1)
Variate Generation Using the Inverse Transform Method
57(4)
Generation of Uniform Variates
58(1)
Generation of Exponential Variates
58(1)
Generation of Discrete Variates
59(1)
Generation of Step Variates from Histograms
60(1)
Process Generation
61(5)
Iid Process Generation
61(1)
Non-Iid Process Generation
61(2)
Exercises
63(3)
Arena Basics
Arena Home Screen
66(3)
Menu Bar
67(1)
Project Bar
67(1)
Standard Toolbar
68(1)
Draw and View Bars
68(1)
Animate and Animate Transfer Bars
68(1)
Run Interaction Bar
69(1)
Integration Bar
69(1)
Debug Bar
69(1)
Example: A Simple Workstation
69(5)
Arena Data Storage Objects
74(1)
Variables
75(1)
Expressions
75(1)
Attributes
75(1)
Arena Output Statistics Collection
75(2)
Statistics Collection via the Statistic Module
76(1)
Statistics Collection via the Record Module
76(1)
Arena Simulation and Output Reports
77(1)
Example: Two Processes in Series
78(6)
Example: A Hospital Emergency Room
84(16)
Problem Statement
84(1)
Arena Model
85(1)
Emergency Room Segment
86(7)
On-Call Doctor Segment
93(3)
Statistics Collection
96(1)
Simulation Output
97(3)
Specifying Time-Dependent Parameters via a Schedule
100(7)
Exercises
103(4)
Model Testing and Debugging Facilities
Facilities for Model Construction
107(3)
Facilities for Model Checking
110(1)
Facilities for Model Run Control
111(3)
Run Modes
111(1)
Mouse-Based Run Control
111(1)
Keyboard-Based Run Control
112(2)
Examples of Run Tracing
114(4)
Example: Open-Ended Tracing
114(2)
Example: Tracing Selected Blocks
116(1)
Example: Tracing Selected Entities
117(1)
Visualization and Animation
118(1)
Animate Connectors Button
118(1)
Animate Toolbar
118(1)
Animate Transfer Toolbar
119(1)
Arena Help Facilities
119(5)
Help Menu
120(1)
Help Button
120(1)
Exercises
120(4)
Input Analysis
Data Collection
124(1)
Data Analysis
125(2)
Modeling Time Series Data
127(3)
Method of Moments
128(1)
Maximal Likelihood Estimation Method
129(1)
Arena Input Analyzer
130(4)
Goodness-of-Fit Tests for Distributions
134(3)
Chi-Square Test
134(3)
Kolmogorov-Smirnov (K-S) Test
137(1)
Multimodal Distributions
137(5)
Exercises
138(4)
Model Goodness: Verification and Validation
Model Verification via Inspection of Test Runs
142(1)
Input Parameters and Output Statistics
142(1)
Using a Debugger
143(1)
Using Animation
143(1)
Sanity Checks
143(1)
Model Verification via Performance Analysis
143(6)
Generic Workstation as a Queueing System
143(1)
Queueing Processes and Parameters
144(1)
Service Disciplines
145(1)
Queueing Performance Measures
145(1)
Regenerative Queueing Systems and Busy Cycles
146(1)
Throughput
147(1)
Little's Formula
148(1)
Steady-State Flow Conservation
148(1)
PASTA Property
149(1)
Examples of Model Verification
149(12)
Model Verification in a Single Workstation
149(4)
Model Verification in Tandem Workstations
153(8)
Model Validation
161(5)
Exercises
162(4)
Output Analysis
Terminating and Steady-State Simulation Models
166(2)
Terminating Simulation Models
166(1)
Steady-State Simulation Models
166(2)
Statistics Collection from Replications
168(3)
Statistics Collection Using Independent Replications
169(1)
Statistics Collection Using Regeneration Points and Batch Means
170(1)
Point Estimation
171(2)
Point Estimation from Replications
171(1)
Point Estimation in Arena
172(1)
Confidence Interval Estimation
173(4)
Confidence Intervals for Terminating Simulations
173(3)
Confidence Intervals for Steady-State Simulations
176(1)
Confidence Interval Estimation in Arena
176(1)
Output Analysis via Standard Arena Output
177(5)
Working Example: A Workstation with Two Types of Parts
177(2)
Observation Collection
179(1)
Output Summary
180(1)
Statistics Summary: Multiple Replications
181(1)
Output Analysis via the Arena Output Analyzer
182(8)
Data Collection
183(1)
Graphical Statistics
184(1)
Batching Data for Independent Observations
185(1)
Confidence Intervals for Means and Variances
186(1)
Comparing Means and Variances
187(2)
Point Estimates for Correlations
189(1)
Parametric Analysis via the Arena Process Analyzer
190(5)
Exercises
193(2)
Correlation Analysis
Correlation in Input Analysis
195(2)
Correlation in Output Analysis
197(2)
Autocorrelation Modeling with TES Processes
199(1)
Introduction to TES Modeling
200(15)
Background TES Processes
202(3)
Foreground TES Processes
205(6)
Inversion of Distribution Functions
211(4)
Generation of TES Sequences
215(4)
Generation of TES+ Sequences
215(1)
Generation of TES- Sequences
216(1)
Combining TES Generation Algorithms
216(3)
Example: Correlation Analysis in Manufacturing Systems
219(4)
Exercises
220(3)
Modeling Production Lines
Production Lines
223(2)
Models of Production Lines
225(1)
Example: A Packaging Line
225(12)
An Arena Model
226(1)
Manufacturing Process Modules
226(1)
Model Blocking Using the Hold Module
227(2)
Resources and Queues
229(1)
Statistics Collection
230(1)
Simulation Output Reports
231(6)
Understanding System Behavior and Model Verification
237(2)
Modeling Production Lines via Indexed Queues and Resources
239(7)
An Alternative Method of Modeling Blocking
246(1)
Modeling Machine Failures
247(4)
Estimating Distributions of Sojourn Times
251(2)
Batch Processing
253(3)
Assembly Operations
256(2)
Model Verification for Production Lines
258(7)
Exercises
259(6)
Modeling Supply Chain Systems
Example: A Production/Inventory System
265(11)
Problem Statement
265(1)
Arena Model
266(1)
Inventory Management Segment
267(3)
Demand Management Segment
270(2)
Statistics Collection
272(1)
Simulation Output
273(1)
Experimentation and Analysis
274(2)
Example: A Multiproduct Production/Inventory System
276(17)
Problem Statement
276(2)
Arena Model
278(1)
Inventory Management Segment
278(6)
Demand Management Segment
284(6)
Model Input Parameters and Statistics
290(2)
Simulation Results
292(1)
Example: A Multiechelon Supply Chain
293(21)
Problem Statement
293(2)
Arena Model
295(1)
Inventory Management Segment for Retailer
295(2)
Inventory Management Segment for Distribution Center
297(2)
Inventory Management Segment for Output Buffer
299(4)
Production/Inventory Management Segment for Input Buffer
303(2)
Inventory Management Segment for Supplier
305(1)
Statistics Collection
305(1)
Simulation Results
306(1)
Exercises
306(8)
Modeling Transportation Systems
Advanced Transfer Template Panel
314(1)
Animate Transfer Toolbar
315(1)
Example: A Bulk-Material Port
316(16)
Ship Arrivals
317(3)
Tug Boat Operations
320(4)
Coal-Loading Operations
324(4)
Tidal Window Modulation
328(2)
Simulation Results
330(2)
Example: A Toll Plaza
332(14)
Arrivals Generation
334(2)
Dispatching Cars to Tollbooths
336(4)
Serving Cars at Tollbooths
340(4)
Simulation Results for the Toll Plaza Model
344(2)
Example: A Gear Manufacturing Job Shop
346(13)
Gear Job Arrivals
349(2)
Gear Transportation
351(2)
Gear Processing
353(5)
Simulation Results for the Gear Manufacturing Job Shop Model
358(1)
Example: Sets Version of the Gear Manufacturing Job Shop Model
359(12)
Exercises
365(6)
Modeling Computer Information Systems
Client/Server System Architectures
371(3)
Message-Based Communications
372(1)
Client Hosts
372(1)
Server Hosts
373(1)
Communications Networks
374(1)
Two-Tier Client/Server Example: A Human Resources System
375(9)
Client Nodes Segment
378(1)
Communications Network Segment
378(2)
Server Node Segment
380(3)
Simulation Results
383(1)
Three-Tier Client/Server Example: An Online Bookseller System
384(21)
Request Arrivals and Transmission Network Segment
386(2)
Transmission Network Segment
388(3)
Server Nodes Segment
391(8)
Simulation Results
399(1)
Exercises
400(5)
Appendix A Frequently Used Arena Constructs
Frequently Used Arena Built-in Variables
405(2)
Entity-Related Attributes and Variables
405(1)
Simulation Time Variables
406(1)
Expressions
406(1)
General-Purpose Global Variables
406(1)
Queue Variables
406(1)
Resource Variables
406(1)
Statistics Collection Variables
406(1)
Transporter Variables
407(1)
Miscellaneous Variables and Functions
407(1)
Frequently Used Arena Modules
407(9)
Access Module (Advanced Transfer)
407(1)
Assign Module (Basic Process)
408(1)
Batch Module (Basic Process)
408(1)
Create Module (Basic Process)
408(1)
Decide Module (Basic Process)
408(1)
Delay Module (Advanced Process)
408(1)
Dispose Module (Basic Process)
409(1)
Dropoff Module (Advanced Process)
409(1)
Free Module (Advanced Transfer)
409(1)
Halt Module (Advanced Transfer)
409(1)
Hold Module (Advanced Process)
410(1)
Match Module (Advanced Process)
410(1)
PickStation Module (Advanced Transfer)
410(1)
Pickup Module (Advanced Process)
410(1)
Process Module (Basic Process)
410(1)
ReadWrite Module (Advanced Process)
411(1)
Record Module (Basic Process)
411(1)
Release Module (Advanced Process)
411(1)
Remove Module (Advanced Process)
411(1)
Request Module (Advanced Transfer)
411(1)
Route Module (Advanced Transfer)
412(1)
Search Module (Advanced Process)
412(1)
Seize Module (Advanced Process)
412(1)
Separate Module (Basic Process)
412(1)
Signal Module (Advanced Process)
413(1)
Station Module (Advanced Transfer)
413(1)
Store Module (Advanced Process)
413(1)
Transport Module (Advanced Transfer)
413(1)
Unstore Module (Advanced Process)
413(1)
VBA Block (Blocks)
414(2)
Appendix B VBA in Arena
Arena's Object Model
416(1)
Arena's Type Library
416(1)
Resolving Object Name Ambiguities
417(1)
Obtaining Access to the Application Object
417(1)
Arena VBA Events
417(2)
Example: Using VBA in Arena
419(12)
Changing Inventory Parameters Just Before a Simulation Run
419(2)
Changing Inventory Parameters during a Simulation Run
421(1)
Changing Customer Arrival Distributions Just before a Simulation Run
422(2)
Writing Arena Data to Excel via VBA Code
424(4)
Reading Arena Data from Excel via VBA Code
428(3)
References 431(4)
Index 435