Muutke küpsiste eelistusi

Simulation of Optical Soliton Control in Micro- and Nanoring Resonator Systems 2015 ed. [Pehme köide]

  • Formaat: Paperback / softback, 100 pages, kõrgus x laius: 235x155 mm, kaal: 1883 g, 28 Illustrations, color; 10 Illustrations, black and white; XIII, 100 p. 38 illus., 28 illus. in color., 1 Paperback / softback
  • Sari: SpringerBriefs in Physics
  • Ilmumisaeg: 30-Mar-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319154842
  • ISBN-13: 9783319154848
Teised raamatud teemal:
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 100 pages, kõrgus x laius: 235x155 mm, kaal: 1883 g, 28 Illustrations, color; 10 Illustrations, black and white; XIII, 100 p. 38 illus., 28 illus. in color., 1 Paperback / softback
  • Sari: SpringerBriefs in Physics
  • Ilmumisaeg: 30-Mar-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319154842
  • ISBN-13: 9783319154848
Teised raamatud teemal:

This book introduces optical soliton control in micro- and nanoring resonator systems. It describes how the ring resonator systems can be optimized as optical tweezers for photodetection by controlling the input power, ring radii and coupling coefficients of the systems. Numerous arrangements and configurations of micro and nanoring resonator systems are explained. The analytical formulation and optical transfer function for each model and the interaction of the optical signals in the systems are discussed. This book shows that the models designed are able to control the dynamical behaviour of generated signals.

1 Introduction
1(4)
1.1 Background of Study
1(1)
1.2 Problem Statement
2(1)
1.3 Research Objective
2(1)
1.4 Scope of Research
3(1)
1.5 Significance of Research
3(2)
2 Literature Review
5(12)
2.1 Introduction
5(1)
2.2 Historical Background
5(1)
2.3 Bright and Dark Solitons
6
2.4 Optical Trapping
6(6)
2.5 Temporal Solitons
12(2)
2.6 Microring Resonator System
14(3)
3 Theory
17(24)
3.1 Introduction
17(1)
3.2 Ring Resonator System
17(5)
3.2.1 Single Ring Resonator
18(2)
3.2.2 Add-Drop Configuration
20(2)
3.3 Fibre Nonlinearity
22(2)
3.4 Nonlinear Kerr Effect
24(3)
3.5 Resonance Characteristics
27(4)
3.5.1 Bandwidth
27(1)
3.5.2 Finesse
28(1)
3.5.3 Free Spectral Range
28(2)
3.5.4 Quality Factor
30(1)
3.6 Optical Tweezers
31(2)
3.7 Self-phase Modulation
33(2)
3.8 Photonics Signal Flow Graph Theory
35(2)
3.8.1 Transmission Rule
36(1)
3.8.2 Addition Rule
36(1)
3.8.3 Product Rule
37(1)
3.9 Z-Transform Method
37(4)
4 Research Methodology
41(22)
4.1 Introduction
41(1)
4.2 Add-Drop Configuration System
41(8)
4.3 PANDA Ring Resonator System
49(4)
4.3.1 Right Nanoring of PANDA Ring Resonator System
50(1)
4.3.2 Left Nanoring of PANDA Ring Resonator System
51(2)
4.4 Modelling Consideration
53(6)
4.4.1 Add-Drop Configuration System Modelling
53(3)
4.4.2 PANDA Ring Resonator System Modelling
56(3)
4.5 Applications of the PANDA System for Photodetector Technology
59(4)
5 Results and Discussion
63(28)
5.1 Introduction
63(1)
5.2 Add-Drop Configuration System
63(1)
5.3 Ring Radius of Add-Drop System
64(2)
5.4 Coupling Coefficient of Add-Drop System
66(5)
5.4.1 Variation of K1 Towards Add-Drop System
67(2)
5.4.2 Variation of K2 Towards Add-Drop System
69(2)
5.5 Optimization of Add-Drop Configuration System
71(1)
5.6 PANDA Ring Resonator System
71(3)
5.7 Ring Radii of PANDA System
74(4)
5.7.1 Center Ring Radius
74(2)
5.7.2 Right and Left Nanorings
76(2)
5.8 Coupling Coefficient of PANDA System
78(5)
5.8.1 Variation of K1 and K2
78(3)
5.8.2 Variation of K3 and K4
81(2)
5.9 Input Power of PANDA System
83(2)
5.10 Optimization of PANDA Ring Resonator System
85(1)
5.11 Optical Tweezers for Photodetector Performance Improvement
86(5)
6 Conclusion
91(2)
References 93(6)
Index 99