Muutke küpsiste eelistusi

Simulation of Power Electronics Converters Using PLECS® [Pehme köide]

(Professor, Mechatronics Engineering Department, Kocaeli University, Kocaeli, Turkey), (Fukuoka Institute of Technology, Fukuoka, Japan)
  • Formaat: Paperback / softback, 566 pages, kõrgus x laius: 229x152 mm, kaal: 1000 g, Approx. 100 illustrations; Illustrations, unspecified
  • Ilmumisaeg: 08-Nov-2019
  • Kirjastus: Academic Press Inc
  • ISBN-10: 0128173645
  • ISBN-13: 9780128173640
Teised raamatud teemal:
  • Formaat: Paperback / softback, 566 pages, kõrgus x laius: 229x152 mm, kaal: 1000 g, Approx. 100 illustrations; Illustrations, unspecified
  • Ilmumisaeg: 08-Nov-2019
  • Kirjastus: Academic Press Inc
  • ISBN-10: 0128173645
  • ISBN-13: 9780128173640
Teised raamatud teemal:

Simulation of Power Electronics Converters Using PLECS® is a guide to simulating a power electronics circuit using the latest powerful software for power electronics circuit simulation purposes. This book assists engineers gain an increased understanding of circuit operation so they can, for a given set of specifications, choose a topology, select appropriate circuit component types and values, estimate circuit performance, and complete the design by ensuring that the circuit performance will meet specifications even with the anticipated variations in operating conditions and circuit component values.

This book covers the fundamentals of power electronics converter simulation, along with an analysis of power electronics converters using PLECS. It concludes with real-world simulation examples for applied content, making this book useful for all those in the electrical and electronic engineering field.

  • Contains unique examples on the simulation of power electronics converters using PLECS®
  • Includes explanations and guidance on all included simulations for re-doing the simulations
  • Incorporates analysis and design for rapidly creating power electronics circuits with high accuracy
Preface xiii
1 Brief introduction to PLECS
Introduction
1(1)
1.1 What is PLECS?
1(2)
1.2 What is this book?
3(2)
References
3(1)
Further reading
3(2)
2 Basics of circuit simulation with PLECS
Introduction
5(1)
2.1 Example 2.1: Resistive voltage divider
5(38)
2.1.1 Preparing the simulation
6(15)
2.1.2 Adding title to the scope
21(1)
2.1.3 Setting the axis limits
22(2)
2.1.4 Change the properties of the shown waveform
24(1)
2.1.5 Reading the values using cursors
24(2)
2.1.6 Zoom in/out
26(3)
2.1.7 Exporting the scope block waveforms
29(2)
2.1.8 Exporting the drawn schematic
31(4)
2.1.9 Display block
35(1)
2.1.10 Changing the block names
35(1)
2.1.11 Hiding the block names
35(1)
2.1.12 Adding text to the schematic
35(2)
2.1.13 Ammeter block
37(1)
2.1.14 Wire colors
38(5)
2.2 Example 2.2: RC circuit analysis
43(31)
2.2.1 Preparing the simulation
43(5)
2.2.2 Specifying the initial condition
48(2)
2.2.3 Showing two or more waveforms simultaneously on the same axis
50(4)
2.2.4 Multiple input scope
54(5)
2.2.5 XY scope block
59(7)
2.2.6 Simulation of control systems
66(6)
2.2.7 Getting help in PLECS
72(2)
References
74(1)
Further reading
74(2)
3 Basics of power electronic circuits simulation with PLECS
Introduction
76(1)
3.1 Example 3.1: MOSFET with resistive load
76(28)
3.1.1 Preparing the simulation
76(6)
3.1.2 Measuring the average and RMS of waveforms
82(4)
3.1.3 Measuring the power dissipated in the load resistor
86(3)
3.1.4 Subsystem block
89(8)
3.1.5 Measuring the input power
97(4)
3.1.6 Generating the PWM signal using ready-to-use blocks
101(3)
3.2 Example 3.2: Uncontrolled single-phase half-wave rectifier
104(23)
3.2.1 Preparing the simulation
104(3)
3.2.2 Harmonic content of output
107(5)
3.2.3 Measuring the RMS values of voltages/currents
112(2)
3.2.4 Capturing a period of output voltage/current
114(2)
3.2.5 "Discrete RMS value" block
116(4)
3.2.6 "Discrete mean value" block
120(2)
3.2.7 Measuring the maximum/minimum of waveforms shown in the scope block
122(2)
3.2.8 Obtaining the load instantaneous power
124(3)
3.3 Example 3.3: Single-phase half-wave controlled rectifier
127(4)
3.3.1 Preparing the simulation
128(3)
3.3.2 Calculating the RMS, mean, max/min, etc.
131(1)
3.4 Example 3.4: Single-phase full-wave controlled rectifier
131(11)
3.4.1 Preparing the simulation
132(6)
3.4.2 Calculating the average output voltage using the "Discrete Fourier transform" block 1
138(4)
3.5 Example 3.5: 3 Phase full-wave controlled rectifier
142(1)
3.5.1 Preparing the simulation
142(3)
3.5.2 Drawing more understandable schematics using "Electrical label," "Signal from," and "Signal goto" blocks
145(5)
3.5.3 Delay block
150(2)
3.6 Example 3.6: Boost converter
152(1)
3.6.1 Preparing the simulation
152(5)
3.6.2 Simulating the circuit using the ready-to-use modulator
157(2)
3.6.3 Efficiency measurement
159(5)
3.7 Example 3.7: Obtaining the small signal transfer functions for a buck converter
164(1)
3.7.1 Preparing the simulation
164(8)
3.7.2 Comparison of different simulation results
172(6)
3.7.3 Importing the simulation results into the MATLAB
178(2)
3.8 Example 3.8: Mutual inductance
180(8)
3.8.1 Preparing the simulation
180(6)
3.8.2 Using parametric variables to specify the component values
186(2)
3.9 Example 3.9: 3-Phase inverter
188(21)
3.9.1 Preparing the simulation
188(9)
3.9.2 Calculating the total harmonic distortion (THD)
197(7)
3.9.3 "Fourier series" block
204(5)
3.10 Example 3.10: Simulation of electrical machines
209(8)
3.10.1 Preparing the simulation
209(6)
3.10.2 Monitoring using the probe block
215(2)
References
217(1)
Further reading
217(2)
4 Simulink® version of PLECS®
4.1 Introduction
219(1)
4.2 Simulation of diode-clamped inverter
219(5)
4.3 Simulation of a diode-clamped multilevel inverter
224(17)
4.3.1 The power stage
226(8)
4.3.2 The PWM generation part
234(6)
4.3.3 Simulation of circuit
240(1)
4.4 Sending/receiving signals to/from Simulink environment
241(6)
4.5 Simulation of a cascaded inverter
247(14)
4.6 Measurement with the probe block
261(4)
4.7 Extraction of frequency response of DC-DC converters
265(8)
4.8 Fitting a transfer function to obtained graph
273(3)
4.9 Designing a controller
276(8)
4.10 Obtaining the control-to-inductor current transfer function
284(1)
4.11 Extraction of output impedance
285(4)
4.12 Steady-state analysis
289(6)
4.13 More simulation examples
295(2)
Further reading
297(2)
5 Thermal analysis of power electronics converters with PLECS
5.1 Introduction
299(1)
5.2 Single-phase open-loop inverter
300(2)
5.3 Electrical simulation of single-phase inverter
302(9)
5.4 Thermal description of semiconductor switches
311(1)
5.5 Switching losses
311(9)
5.5.1 Turn-on switching losses for the IGBT
312(5)
5.5.2 Turn-off switching losses for the IGBT
317(3)
5.6 Conduction losses for the IGBT
320(1)
5.7 Thermal impedances
321(3)
5.8 Adding comments
324(1)
5.9 Saving the produced thermal model
325(1)
5.10 Adding the produced model to thermal search path of PLECS
326(2)
5.11 Modeling losses of body diode
328(3)
5.11.1 The turn-on losses of body diode
330(1)
5.11.2 The turn-off losses of body diode
330(1)
5.11.3 The conduction losses of body diode
331(1)
5.12 Thermal impedance of body diode
331(4)
5.13 Loss measurements
335(13)
5.13.1 Calculation of IGBT's losses
337(5)
5.13.2 Calculation of body diode's losses
342(1)
5.13.3 Calculation of total losses
342(6)
5.14 Junction temperatures measurement
348(1)
5.15 Running the simulation
349(3)
5.16 Designing the heat sink
352(6)
5.17 Effect of modulation technique on losses
358(2)
5.17.1 Review of unipolar PWM
358(2)
5.18 Calculation of losses for a unipolar PWM inverter
360(3)
Further reading
363(2)
6 Extraction of power electronics converters uncertainties with PLECS®
6.1 Introduction
365(1)
6.2 Uncertainty models
366(2)
6.2.1 Parametric uncertainty
366(1)
6.2.2 Unstructured uncertainty
367(1)
6.2.3 Structured uncertainty
367(1)
6.3 Robust control
368(1)
6.3.1 Kharitonov's theorem
368(1)
6.3.2 H∞ Control
368(1)
6.3.3 μ Synthesis
369(1)
6.4 Case study: A zeta converter
369(28)
6.4.1 Analyzing the system without uncertainty
370(10)
6.4.2 Audio susceptibility
380(1)
6.4.3 Output impedance
381(2)
6.4.4 Using the PLECS® to extract the uncertain model of the DC-DC converters
383(14)
References
397(2)
7 Simulation of magnetic circuits in PLECS
7.1 Introduction
399(1)
7.2 Magnetic blocks
399(6)
7.2.1 Winding block
400(2)
7.2.2 Magnetic permeance block
402(1)
7.2.3 Saturable core block
402(2)
7.2.4 Hysteretic core block
404(1)
7.2.5 Air gap block
405(1)
7.2.6 Leakage flux path block
405(1)
7.3 Implementation of blocks
405(1)
7.4 Some commonly used magnetic configuration
406(1)
7.5 Case study
407(10)
7.6 Where to go next?
417(2)
Reference
419(1)
Further reading
419(3)
8 Fundamental concepts of power electronic circuits
8.1 Introduction
422(1)
8.2 Instantaneous power
422(2)
8.3 Average power
424(1)
8.4 Effective value of a signal
425(7)
8.4.1 Effective value of sum of two periodic signals
429(2)
8.4.2 Measurement of RMS of signals
431(1)
8.5 Apparent power and power factor
432(1)
8.6 Power computations for linear circuits
433(1)
8.7 Fourier series
434(4)
8.7.1 Fourier series of important waveshapes
435(2)
8.7.2 Calculation of average power using the Fourier series
437(1)
8.8 Total harmonic distortion (THD)
438(1)
8.9 Volt-second balance
439(1)
8.10 Ampere-second balance
440(1)
8.11 MOSFET with resistive load
441(2)
8.12 Uncontrolled half-wave rectifier
443(1)
8.13 Controlled half-wave rectifier
444(1)
8.14 DC-DC converters
445(7)
8.14.1 Buck converter
446(6)
8.15 Calculation of output voltage of a buck converter operated in DCM
452(2)
8.16 Other types of DC-DC converters operating in DCM
454(3)
8.16.1 Boost converter
454(1)
8.16.2 Buck-boost converter
455(1)
8.16.3 Cuk converter
455(1)
8.16.4 Flyback converter
456(1)
8.17 Dynamics of DC-DC converters
457(17)
8.17.1 Overview of state space averaging (SSA)
457(2)
8.17.2 Dynamical model of buck converter
459(15)
8.18 PID controller design for converter
474(4)
8.19 Input/output impedance of converter
478(8)
8.20 Effect of feedback control on output impedance
486(2)
8.21 Dynamic of buck-boost converter
488(7)
8.22 Dynamics of boost converter
495(7)
8.23 Dynamics of zeta converter
502(13)
8.24 Inverters
515(6)
8.24.1 Series H bridge inverters
518(1)
8.24.2 Diode-clamped multilevel inverters
519(2)
8.25 Heatsink
521(5)
Further reading
526(1)
Appendix A 527(10)
Appendix B Reading the graphs using online tools 537(8)
Index 545
Professor Farzin Asadi works in the Mechatronics Engineering Department at Kocaeli University, Kocaeli, Turkey Kei Eguchi works in Fukuoka Institute of Technology in Fukuoka, Japan.