Muutke küpsiste eelistusi

Sliding Mode Control: The Delta-Sigma Modulation Approach 2015 ed. [Kõva köide]

  • Formaat: Hardback, 258 pages, kõrgus x laius: 235x155 mm, kaal: 5817 g, 33 Illustrations, color; 74 Illustrations, black and white; XIV, 258 p. 107 illus., 33 illus. in color., 1 Hardback
  • Sari: Control Engineering
  • Ilmumisaeg: 09-Jun-2015
  • Kirjastus: Birkhauser Verlag AG
  • ISBN-10: 3319172565
  • ISBN-13: 9783319172569
  • Kõva köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 258 pages, kõrgus x laius: 235x155 mm, kaal: 5817 g, 33 Illustrations, color; 74 Illustrations, black and white; XIV, 258 p. 107 illus., 33 illus. in color., 1 Hardback
  • Sari: Control Engineering
  • Ilmumisaeg: 09-Jun-2015
  • Kirjastus: Birkhauser Verlag AG
  • ISBN-10: 3319172565
  • ISBN-13: 9783319172569

This monograph presents a novel method of sliding mode control for switch-regulated nonlinear systems. The Delta Sigma modulation approach allows one to implement a continuous control scheme using one or multiple, independent switches, thus effectively merging the available linear and nonlinear controller design techniques with sliding mode control. Sliding Mode Control: The Delta-Sigma Modulation Approach, combines rigorous mathematical derivation of the unique features of Sliding Mode Control and Delta-Sigma modulation with numerous illustrative examples from diverse areas of engineering. In addition, engineering case studies demonstrate the applicability of the technique and the ease with which one can implement the exposed results. This book will appeal to researchers in control engineering and can be used as graduate-level textbook for a first course on sliding mode control.

Arvustused

The objective of this book is to present fundamental knowledge about sliding-mode control as well as the most recent developments in theory and applications. To be comprehensible, diverse examples are employed to demonstrate applicability in numerous areas. The book is a valuable textbook for beginners in sliding-mode control. It can also be a reference for experienced researchers in both academia and industry. This book can be used in senior undergraduate- and/or graduate-level courses. (Hesuan Hu, IEEE Control Systems Magazine, Vol. 36 (3), June, 2016)

1 Introduction 1(36)
1.1 Generalities about sliding mode control
1(1)
1.2 The elements of sliding mode control
1(2)
1.3 A switch commanded RC. circuit
3(7)
1.4 The effect of unknown perturbations
10(1)
1.5 Trajectory tracking in a switched RC circuit
11(4)
1.6 A water tank system example
15(4)
1.7 Trajectory tracking for the tank water height
19(2)
1.8 A Bilinear DC to DC Converter
21(5)
1.8.1 Switching on a Desired Constant Voltage Line
23(1)
1.8.2 Switching on a Desired Constant Current Line
24(2)
1.9 A Second Order System Example
26(3)
1.10 The quest for global sliding motions
29(3)
1.11 A nasty perturbation
32(2)
1.12 Some lessons learned from the examples
34(3)
2 Single-input single-output sliding mode control 37(52)
2.1 Introduction
37(1)
2.2 Variable structure systems
38(1)
2.3 Control of single switch regulated systems
38(1)
2.4 Switching between continuous feedback laws
39(2)
2.5 Sliding surface
41(1)
2.6 Notation
42(1)
2.7 The transversal condition
42(1)
2.8 Equivalent control and ideal sliding dynamics
43(3)
2.9 Accessibility of the sliding surface
46(6)
2.10 A Lyapunov approach to surface reachability
52(1)
2.11 Control of the Boost converter
53(4)
2.11.1 Direct control
54(1)
2.11.2 Indirect control
55(1)
2.11.3 Simulations
56(1)
2.12 Control of the "Buck-Boost" converter
57(5)
2.12.1 Direct control
58(1)
2.12.2 Indirect control
59(2)
2.12.3 Simulations
61(1)
2.13 Sliding on a circle
62(1)
2.14 Trajectory tracking
63(3)
2.15 Invariance conditions under matched perturbations
66(7)
2.15.1 Drift field perturbation
66(4)
2.15.2 Control field perturbations
70(1)
2.15.3 Control and drift fields perturbations
71(1)
2.15.4 The equivalent control of a perturbed system
72(1)
2.16 Sliding surface design
73(3)
2.17 Some further geometric aspects
76(8)
2.18 A soft landing example
84(2)
2.19 The exactly linearizable case
86(3)
3 Delta-Sigma Modulation 89(38)
3.1 Introduction
89(1)
3.2 Delta Modulation
90(2)
3.3 Second order Delta modulation
92(3)
3.4 Higher order Delta modulation
95(4)
3.5 Delta-Sigma modulation
99(7)
3.5.1 Two simple properties of Delta-Sigma modulators
103(1)
3.5.2 High gain Delta-Sigma modulation
104(2)
3.6 Two level Delta-Sigma modulation
106(3)
3.6.1 Delta-Sigma modulation with an arbitrary quantization levels
107(2)
3.7 Multilevel Delta-Sigma modulation
109(1)
3.8 Average feedbacks and Delta-Sigma-Modulation
110(6)
3.8.1 Control of the Double Bridge Buck Converter
112(4)
3.9 Multilevel Sliding Mode control of mechanical systems
116(2)
3.10 Second order Delta-Sigma modulation
118(4)
3.11 Delta-Sigma modulation and integral sliding mode control
122(5)
3.11.1 Sliding on the integral control input error
122(1)
3.11.2 Integral sliding modes: surface and control modification
123(4)
4 Multi-variable sliding mode control 127(38)
4.1 Introduction
127(1)
4.2 Multiple Input Multiple Output case
128(1)
4.3 Sliding surfaces
129(1)
4.4 Some notation
130(2)
4.5 Equivalent control and ideal sliding dynamics
132(2)
4.6 Invariance with respect to matched perturbations
134(1)
4.7 Reachability of the sliding surface
135(1)
4.8 Control of the Boost-Boost converter
136(3)
4.8.1 Simulations
138(1)
4.9 Control of the double buck-boost converter
139(6)
4.9.1 Direct control
141(1)
4.9.2 Indirect control
142(1)
4.9.3 Simulations
143(2)
4.10 The fully actuated rigid body
145(3)
4.10.1 Simulations
146(1)
4.10.2 A computed torque controller via Δ — Σ modulation
147(1)
4.10.3 Simulations
147(1)
4.11 The multi-variable relative degree
148(2)
4.12 Sliding surface vector design
150(4)
4.13 Further notation
154(3)
4.14 The under-actuated rigid body
157(5)
4.15 Two cascaded buck converters
162(3)
5 An Input-Output approach to Sliding Mode Control 165(46)
5.1 Introduction
165(1)
5.2 GPI control of chains of integrators
166(13)
5.2.1 A double integrator
166(2)
5.2.2 A third order integrator
168(4)
5.2.3 N-th order integrator
172(1)
5.2.4 Robustness with respect to classical perturbations
173(1)
5.2.5 A perturbed double integrator plant
173(2)
5.2.6 The presence of noises
175(2)
5.2.7 A perturbed third order integration plant
177(2)
5.3 Relations with classical compensator design
179(3)
5.4 A DC motor controller design example
182(3)
5.5 Control of the Double Bridge Buck Converter
185(3)
5.6 GPI control for systems in State Space Form
188(2)
5.7 Generalization to MIMO linear systems
190(4)
5.8 GPI and Sliding Mode Control
194(8)
5.8.1 Compensated sliding surface coordinate functions based on integral reconstructors
194(2)
5.8.2 A GPI based sliding mode control of a perturbed system
196(6)
5.9 GPI control of some nonlinear systems
202(9)
5.9.1 A permanent magnet stepper motor
202(5)
5.9.2 An induction motor
207(4)
6 Differential flatness and sliding mode control 211(42)
6.1 Introduction
211(1)
6.2 Flatness in Multi-variable Nonlinear systems
212(4)
6.3 The rolling penny
216(4)
6.4 Single axis car
220(3)
6.5 The planar rigid body
223(4)
6.5.1 The Rocket Example
226(1)
6.6 Sliding surface design for flat systems
227(5)
6.6.1 A stepping motor example
229(3)
6.7 The feed-forward controller
232(1)
6.8 Flatness guided design in switched systems
233(20)
6.8.1 Control of a two degrees of freedom robot
239(5)
6.8.2 A "chained" mass-spring system
244(4)
6.8.3 A single link-DC motor system
248(1)
6.8.4 A multilevel Buck DC to DC converter controller design
249(4)
References 253(4)
Index 257