Preface |
|
xiii | |
Authors |
|
xv | |
|
|
1 | (16) |
|
Examples of Dynamic Systems with Sliding Modes |
|
|
1 | (3) |
|
Sliding Modes in Relay and Variable Structure Systems |
|
|
4 | (6) |
|
Multidimensional Sliding Modes |
|
|
10 | (3) |
|
Outline of Sliding Mode Control Methodology |
|
|
13 | (4) |
|
|
15 | (2) |
|
|
17 | (24) |
|
|
17 | (3) |
|
|
20 | (8) |
|
Equivalent Control Method |
|
|
28 | (3) |
|
Physical Meaning of Equivalent Control |
|
|
31 | (2) |
|
|
33 | (8) |
|
|
40 | (1) |
|
|
41 | (22) |
|
|
41 | (1) |
|
|
42 | (4) |
|
|
46 | (3) |
|
|
49 | (2) |
|
|
51 | (3) |
|
Second-Order Sliding Mode Control |
|
|
54 | (9) |
|
|
54 | (2) |
|
|
56 | (4) |
|
|
60 | (2) |
|
|
62 | (1) |
|
Sliding Mode Control of Pendulum Systems |
|
|
63 | (30) |
|
|
63 | (4) |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
67 | (5) |
|
Rotational Inverted Pendulum Model |
|
|
72 | (2) |
|
Rotational Inverted Pendulum |
|
|
74 | (5) |
|
Control of the Inverted Pendulum |
|
|
74 | (3) |
|
Control of the Base Angle and Inverted Pendulum |
|
|
77 | (2) |
|
Simulation and Experiment Results for Rotational Inverted Pendulum |
|
|
79 | (14) |
|
Stabilization of the Inverted Pendulum |
|
|
82 | (2) |
|
Stabilization of the Inverted Pendulum and the Base |
|
|
84 | (7) |
|
|
91 | (2) |
|
Control of Linear Systems |
|
|
93 | (30) |
|
|
93 | (3) |
|
|
96 | (1) |
|
Sliding Mode Dynamic Compensators |
|
|
97 | (6) |
|
|
103 | (8) |
|
|
107 | (4) |
|
Output Feedback Sliding Mode Control |
|
|
111 | (6) |
|
Control of Time-Varying Systems |
|
|
117 | (6) |
|
|
121 | (2) |
|
|
123 | (16) |
|
Linear Asymptotic Observers |
|
|
123 | (2) |
|
Observers for Linear Time-Invariant Systems |
|
|
125 | (1) |
|
Observers for Linear Time-Varying Systems |
|
|
126 | (9) |
|
|
126 | (3) |
|
|
129 | (2) |
|
|
131 | (2) |
|
The System with Zero Disturbances |
|
|
133 | (1) |
|
The System with Disturbances |
|
|
134 | (1) |
|
Observer for Linear Systems with Binary Output |
|
|
135 | (4) |
|
|
135 | (3) |
|
|
138 | (1) |
|
|
139 | (20) |
|
|
139 | (1) |
|
|
140 | (1) |
|
|
141 | (2) |
|
Perturbation and Uncertainty Estimation |
|
|
143 | (2) |
|
|
145 | (12) |
|
Linear Time-Invariant Systems |
|
|
146 | (1) |
|
Control of Robot Manipulators |
|
|
147 | (3) |
|
Pulse-Width Modulation for Electric Drives |
|
|
150 | (1) |
|
Robust Current Control for Permanent-Magnet Synchronous Motors |
|
|
151 | (6) |
|
|
157 | (2) |
|
|
158 | (1) |
|
|
159 | (46) |
|
|
159 | (13) |
|
|
160 | (1) |
|
Example System: Ideal Sliding Mode |
|
|
161 | (3) |
|
Example System: Causes of Chattering |
|
|
164 | (4) |
|
Describing Function Method for Chattering Analysis |
|
|
168 | (4) |
|
|
172 | (3) |
|
|
175 | (4) |
|
|
179 | (4) |
|
Disturbance Rejection Solution |
|
|
183 | (4) |
|
State-Dependent Gain Method |
|
|
187 | (2) |
|
Equivalent Control-Dependent Gain Method |
|
|
189 | (4) |
|
Multiphase Chattering Suppression |
|
|
193 | (8) |
|
|
193 | (3) |
|
|
196 | (5) |
|
Comparing the Different Solutions |
|
|
201 | (4) |
|
|
203 | (2) |
|
Discrete-Time and Delay Systems |
|
|
205 | (18) |
|
Introduction to Discrete-Time Systems |
|
|
205 | (3) |
|
Discrete-Time Sliding Mode Concept |
|
|
208 | (4) |
|
Linear Discrete-Time Systems with Known Parameters |
|
|
212 | (2) |
|
Linear Discrete-Time Systems with Unknown Parameters |
|
|
214 | (2) |
|
Introduction to Systems with Delays and Distributed Systems |
|
|
216 | (1) |
|
Linear Systems with Delays |
|
|
217 | (1) |
|
|
218 | (3) |
|
|
221 | (2) |
|
|
222 | (1) |
|
|
223 | (98) |
|
|
224 | (16) |
|
|
224 | (1) |
|
|
224 | (1) |
|
|
225 | (1) |
|
|
226 | (1) |
|
Integrated Structure for Speed Control |
|
|
227 | (1) |
|
|
228 | (4) |
|
Speed Control with Reduced-Order Model |
|
|
232 | (4) |
|
Observer Design for Sensorless Control |
|
|
236 | (1) |
|
Estimation of the Shaft Speed |
|
|
236 | (2) |
|
Estimation of Load Torque |
|
|
238 | (1) |
|
|
239 | (1) |
|
Permanent-Magnet Synchronous Motors |
|
|
240 | (31) |
|
|
240 | (3) |
|
Modeling of Permanent-Magnet Synchronous Motors |
|
|
243 | (6) |
|
Sliding Mode Current Control |
|
|
249 | (1) |
|
First Method for Current Control |
|
|
249 | (4) |
|
Second Method for Current Control |
|
|
253 | (5) |
|
|
258 | (3) |
|
|
261 | (3) |
|
Observer for Speed Sensorless Control |
|
|
264 | (1) |
|
Current Observer for EMF Components |
|
|
265 | (1) |
|
Observer for EMF Components |
|
|
266 | (3) |
|
|
269 | (2) |
|
|
271 | (47) |
|
|
271 | (1) |
|
Model of the Induction Motor |
|
|
272 | (6) |
|
Rotor Flux Observer with Known Rotor Speed |
|
|
278 | (1) |
|
Online Simulation of Rotor Flux Model |
|
|
278 | (1) |
|
Sliding Mode Observer with Adjustable Rate of Convergence |
|
|
279 | (4) |
|
Simultaneous Observation of Rotor Flux and Rotor Speed |
|
|
283 | (1) |
|
Analysis of Current Tracking |
|
|
284 | (3) |
|
Composite Observer-Controller Analysis |
|
|
287 | (3) |
|
|
290 | (1) |
|
|
290 | (9) |
|
Speed, Rotor Time Constant Observer, and Experimental Results |
|
|
299 | (7) |
|
Direct Torque and Flux Control |
|
|
306 | (10) |
|
Supplement: Cascaded Torque and Flux Control Via Phase Currents |
|
|
316 | (2) |
|
|
318 | (3) |
|
|
319 | (2) |
|
|
321 | (76) |
|
|
321 | (31) |
|
|
322 | (2) |
|
Direct Sliding Mode Control |
|
|
324 | (1) |
|
Buck-Type DC/DC Converter |
|
|
325 | (2) |
|
Boost-Type DC/DC Converter |
|
|
327 | (3) |
|
|
330 | (3) |
|
Observer-Based Control of Buck Converters |
|
|
333 | (4) |
|
Observer-Based Control of Boost Converters |
|
|
337 | (6) |
|
|
343 | (9) |
|
Boost-Type AC/DC Converters |
|
|
352 | (24) |
|
Model of the Boost-Type AC/DC Converter |
|
|
356 | (2) |
|
Model in Phase Coordinate Frame |
|
|
358 | (1) |
|
Model in (d, q) Coordinate Frame |
|
|
359 | (3) |
|
|
362 | (1) |
|
Sliding Mode Current Control |
|
|
363 | (4) |
|
Output Voltage Regulation |
|
|
367 | (2) |
|
|
369 | (1) |
|
Observer for Sensorless Control |
|
|
369 | (4) |
|
Current Observer for Source Phase Voltage |
|
|
373 | (1) |
|
Observer for Source Voltage |
|
|
374 | (1) |
|
|
374 | (1) |
|
|
375 | (1) |
|
|
376 | (1) |
|
|
376 | (14) |
|
|
377 | (1) |
|
Control Design: Sliding Mode PWM |
|
|
378 | (4) |
|
|
382 | (1) |
|
|
383 | (2) |
|
Possible Applications of vn Control |
|
|
385 | (1) |
|
|
386 | (1) |
|
|
387 | (3) |
|
|
390 | (7) |
|
|
396 | (1) |
|
|
397 | (58) |
|
|
397 | (8) |
|
Generic Inertial Dynamics |
|
|
398 | (1) |
|
|
399 | (1) |
|
|
400 | (1) |
|
|
400 | (1) |
|
Boundedness of Dynamic Terms |
|
|
401 | (3) |
|
Nonholonomic Robots: Model of Wheel-Set |
|
|
404 | (1) |
|
Trajectory Tracking Control |
|
|
405 | (18) |
|
|
407 | (5) |
|
|
412 | (4) |
|
Continuous Feedback/Feedforward Control with Additional Discontinuity Term for Sliding Mode |
|
|
416 | (5) |
|
Discussion of Sliding Mode Control Design Choices |
|
|
421 | (2) |
|
Gradient Tracking Control |
|
|
423 | (11) |
|
|
426 | (3) |
|
Gradient Tracking Control Design for Holonomic Robots |
|
|
429 | (1) |
|
Gradient Tracking Control Design for Nonholonomic Robots |
|
|
430 | (4) |
|
|
434 | (21) |
|
Torque Control for Flexible Robot Joints |
|
|
434 | (4) |
|
Collision Avoidance for Mobile Robots in a Known Planar Workspace |
|
|
438 | (5) |
|
Collision Avoidance in Higher-Dimensional Known Workspaces |
|
|
443 | (4) |
|
Automatic Steering Control for Passenger Cars |
|
|
447 | (5) |
|
|
452 | (3) |
|
|
455 | (22) |
|
|
455 | (5) |
|
Camless Combustion Engine |
|
|
460 | (8) |
|
Observer for Automotive Alternator |
|
|
468 | (9) |
|
|
474 | (3) |
Index |
|
477 | |